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Abstract 31 

 32 

Effective decision making in an uncertain world requires balancing the benefits of acquiring 33 

relevant information with the costs of delaying choice. Optimal strategies for information 34 

sampling can be accurate but computationally expensive, whereas heuristic strategies are often 35 

computationally simple but rigid. To characterize the computations that underlie information 36 

sampling, we examined choice processes in human participants who sampled sequences of 37 

images (e.g. indoor and outdoor scenes) and attempted to infer the majority category (e.g. indoor 38 

or outdoor) under two reward conditions. We examined how behavior maps onto potential 39 

information sampling strategies. We found that choices were best described by a flexible 40 

function that lay between optimality and heuristics; integrating the magnitude of evidence 41 

favoring each category and the number of samples collected thus far. Integration of these criteria 42 

resulted in a trade-off between evidence and samples collected, in which the strength of evidence 43 

needed to stop sampling decreased linearly as the number of samples accumulated over the 44 

course of a trial. This non-optimal trade-off best accounted for choice behavior even under high 45 

reward contexts. Our results demonstrate that unlike the optimal strategy, humans are performing 46 

simple accumulations instead of computing expected values, and that unlike a simple heuristic 47 

strategy, humans are dynamically integrating multiple sources of information in lieu of using 48 

only one source. This evidence-by-costs tradeoff illustrates a computationally efficient strategy 49 

that balances competing motivations for accuracy and cost minimization. 50 

   51 
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Introduction 52 

Before making important decisions, humans often collect information about the likely 53 

outcomes of different choice options. Consider the choice between two popular restaurants in a 54 

new city. Collecting information about both restaurants can increase the likelihood of a positive 55 

dining experience but also carries costs (e.g., time spent on evidence accumulation increases the 56 

likelihood that the options will become unavailable). Effective decision making thus requires 57 

information sampling strategies that balance accuracy and sampling costs – and understanding 58 

this balance remains a critical topic for decision science (Averbeck, 2015; Blanchard & 59 

Gershman, 2018; Cohen et al., 2007; Gigerenzer & Goldstein, 1996; Gold & Shadlen, 2007; 60 

Kolling et al., 2012; H. A. Simon, 1990). In particular, how is information about evidence and 61 

costs transformed into the decision to sample information or stop?  62 

Current normative models of sequential information sampling posit that an optimal 63 

information sampling strategy should compare the expected values of available actions (continue 64 

sampling, choose option A, or choose option B) before selecting the action with the highest 65 

expected value (Coenen & Gureckis, 2016; Furl & Averbeck, 2011; Hauser et al., 2017, 2018; 66 

Moutoussis et al., 2011). Computing these expected values requires several steps. The decision 67 

maker must first determine the expected value of stopping by calculating the probability that 68 

each option is correct given the available evidence collected thus far. This estimate must, then, 69 

be multiplied by the available reward minus the costs accrued. To determine the value of 70 

continuing, the decision maker must estimate the expected values of potential future states, as if 71 

an additional sample was drawn. Accurate estimation of these future expected values necessitates 72 

an extensive backward induction process (Bellman, 1957) that must be updated with each new 73 

sample drawn (Arrow et al., 1949; Furl & Averbeck, 2011; Hauser et al., 2017, 2018; 74 

Moutoussis et al., 2011).  75 

Prior work on information sampling has documented that humans sample information 76 

sub-optimally, attending to extraneous information (Juni et al., 2016) or through biased 77 

weighting of sampling costs (Cisek et al., 2009; Furl & Averbeck, 2011; Hauser et al., 2018). 78 

Yet, computing and updating the value of continuing to sample evidence may require significant 79 

computational resources, especially for complex decisions, as in sequential information sampling 80 

(Bossaerts & Murawski, 2017; Bossaerts et al., 2019; Payzan-LeNestour & Bossaerts, 2011). 81 

Indeed, evidence suggests that humans forgo using intensive updating computations, such as 82 
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Bayesian inference (Charness & Levin, 2005; Gigerenzer & Goldstein, 1996; Payzan-LeNestour 83 

& Bossaerts, 2011; Steyvers et al., 2009), even for simpler decisions (Cassey et al., 2016). One 84 

factor that might increase the likelihood that humans are willing to expend resources for more 85 

optimal computations is the reward value for a correct decision (Bennett et al., 2019; Manohar et 86 

al., 2015) but this has not been explored within the context of information sampling. Thus, it 87 

remains unclear whether strategies that rely on computations of expected value reflect human 88 

information sampling and whether the use of such computations depends on reward context.  89 

If humans do not follow the computations of an optimal decision maker, what determines 90 

when they stop sampling? Early accounts proposed that information search relies on simplified 91 

heuristic strategies guided by bounded rationality (Conlisk, 1996; Gigerenzer & Goldstein, 1996; 92 

Shah & Oppenheimer, 2008; H. A. Simon, 1990; Herbert A. Simon, 1955; Tversky & Edwards, 93 

1966). In these strategies, a set of rules is established to guide both the process of information 94 

acquisition (i.e., what information should be attended to and incorporated as evidence) and the 95 

decision to stop sampling. Such heuristic strategies minimize cognitive resource expenditure by 96 

leveraging declarative rules; however, by definition, these strategies are less flexible and less 97 

adaptable to changes in incoming information or changes in context. While recent accounts have 98 

demonstrated support for heuristic-style strategies in information gathering (Baumann et al., 99 

2020; Korn & Bach, 2018; Sang et al., 2020), these studies examined information sampling in 100 

contexts where individuals received ongoing feedback about their choices, and it remains unclear 101 

whether behavior follows heuristic strategies when individuals must collect and integrate 102 

information without ongoing feedback – as in the case for many real-world decisions.  103 

In the present study, we investigated whether humans rely on optimal or heuristic 104 

strategies (or their combination) during information sampling, and whether their strategies 105 

changed as a function of the reward at stake. We tested several potential models of strategic 106 

information sampling that varied in the information used and how that information contributed to 107 

the decision process. We found that participants’ behavior was best explained by a simple yet 108 

flexible strategy in which humans tracked a linear combination of both the evidence in favor of 109 

each category and the accrued costs from sampling – but did not rely on a declarative rule or 110 

estimations of expected values. This strategy explained a key pattern we observed in sampling 111 

behavior: evidence and costs traded off within but not across trials such that as costs 112 

accumulated over a trial, the strength of evidence needed for stopping decreased linearly. 113 
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Moreover, we found that high-reward contexts neither improved optimality nor impacted which 114 

strategy best accounted for participants’ decisions. Our results demonstrated how humans 115 

implement simple yet flexible information sampling strategies to balance competing motivations 116 

for accuracy and cost minimization.  117 

 118 

Results 119 

We tested participants on a modified version of the Information Sampling Task (Fig. 1) 120 

(Clark et al., 2006). Participants viewed a series of images randomly drawn from a pool of 25 121 

images. The pool contained images from two categories (e.g., indoor vs. outdoor scenes), with 122 

one category comprising 60% of the images and the other comprising 40%. Importantly, 123 

participants were unaware of the true proportions of each image category for each trial, although 124 

they were told that there would always be a majority category. Participants attempted to identify 125 

which category was more prevalent on each trial, under either high ($5.00) or low ($1.00) reward 126 

stakes for correct answers. Each image participants chose to draw came with a sampling cost of 127 

2% of the maximum reward on that trial (i.e. $0.10 for a $5.00 trial; $0.02 for a $1.00 trial). 128 

Thus, participants had to balance competing goals: sampling more images could increase the 129 

accuracy of their guesses, but they would win less reward overall due to the increasing cost 130 

accrued (see Supplementary Methods: Task Instructions). 131 

 132 

 133 

  134 
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 135 

Figure 1: Task Design. Participants completed a modified version of the Information Sampling Task (Clark et al., 136 

2006). Each trial started with a Cue screen that informed the participant which of two domains the images were 137 

being drawn from (indoor vs. outdoor or living vs. non-living) and how much money that trial was worth if they 138 

performed successfully (high reward: $5.00, low reward: $1.00). Participants were then advanced to the Sample 139 

screen where they had a maximum of 15 seconds to sample an image or to indicate their final response for that trial 140 

(e.g., O for majority outdoor, I for majority indoor). If they chose to sample, an image appeared over the sample 141 

button for 2500 ms. The image then disappeared, and the participant returned to the Sample screen. Each time the 142 

participant returned to the Sample screen, the 15 second timer reset. When participants selected a final response, 143 

they received feedback on whether they were correct before moving on to the next trial.  144 

 145 

Greater sampling is associated with higher task accuracy, but at the expense of greater cost 146 

accumulation  147 

We first investigated how well participants performed the task. Participants correctly 148 

identified the majority category 79% of the time (SD = 10%) (Fig 2a). Across the entire task, 149 

participants accumulated an average of $95.07 (SD = $10.52) but were only paid for a randomly 150 

selected subset of those trials (see Supplementary note 1 and Supplementary Fig. 1). On average, 151 

participants viewed 7.82 images (SD = 2.89 images, Range = 1 – 24 images) and reached an 152 

average difference in evidence between the currently held majority and minority category of 2.61 153 

images (SD = 0.62, Range = 0 – 8 images) before selecting a majority category (Fig. 2a-c).  154 

We next examined whether performance outcomes were predicted by participants’ 155 

relative tendency to sample. Across participants, a higher average number of samples predicted 156 

better task accuracy (Fig. 2e) (F(2, 91) = 43.5, p < 0.001, R2 = 0.48, 95% CI [1.47, 3.09]). 157 

Similarly, the average number of samples also predicted total earnings via an inverted-U shaped 158 

function (Fig. 2f) (F(3, 90) = 3.239, p = 0.026, R2 = 0.07, 95% CI (quadratic) [-49.91, -8.39]; 159 

𝜒2(91, N = 94) = 7.785, p = 0.006). Thus, participants whose sampling was, on average, much 160 
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lower or much higher than average tended to have lower overall earnings. We repeated this 161 

analysis at the trial-level within participants and found consistent results. The number of samples 162 

drawn on a given trial predicted both accuracy (𝛽𝑠𝑎𝑚𝑝𝑙𝑒𝑠  = 0.0818, t = 7.49, p < 0.001, 95% CI 163 

[0.06, 0.10]) and earnings (𝛽𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = -6.49, t = -4.38, p < 0.001, 95% CI [-9.22, -164 

3.73]; 𝛽𝑠𝑎𝑚𝑝𝑙𝑒𝑠2  = -4.44, t = -3.46, p < 0.001, 95% CI [-6.98, -1.93]). Overall, a higher average 165 

number of samples collected prior to stopping resulted in better task accuracy but also greater 166 

accumulation of sampling costs – leading to lower earnings.  167 

To compare participant performance to an optimal decision maker (Fig. 2e-f), we 168 

computed optimal choices using an Ideal Observer model (see Supplementary Methods: Ideal 169 

Observer Model). We used this model to label each trial for each participant as optimal (matched 170 

the choice made by the Ideal Observer), under-sampled (stopped sampling earlier than the Ideal 171 

Observer), or over-sampled (stopped sampling after the Ideal Observer). We then created 172 

composite scores for each participant to assess how close participants were to optimal behavior 173 

(Fig. 2d). Collectively, participants performed worse than the Ideal Observer, both in accuracy 174 

(two-sided t-test: t(186) = 6.33, p < 0.001, Mideal = 85.6%, SD = 5.2%) and in earnings (two-175 

sided t-test: t(186) = 6.02, p < 0.001, Mideal = $101.97, SD = $7.67), but they did not differ 176 

significantly from the Ideal Observer in the average number of samples drawn (two-sided t-test: 177 

t(186) = 1.38, p = 0.169, Mideal = 8.24 images, SD = 5.21). Upon further examination, however, 178 

this was due to participants either over- or under-sampling relative to optimality (F(5, 530) = 179 

20.54, p < 0.001), indicating that participants are either estimating optimal behavior poorly or 180 

relying on a different process to establish stopping criteria. 181 

 182 

 183 
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 184 

Figure 2. Sampling tendencies between participants relate to overall task accuracy and total earnings. a) The 185 

proportion of trials where participants made a stop choice, conditioned on the current combination of images from 186 

both categories (collapsed across all participants). For ease of comparison to the task example shown in Figure 1, we 187 

label the axes according to “outdoor” and “indoor” categories but note that these data also include behavior from the 188 

living/non-living trials as well. The proportion was calculated by dividing the number of instances in which 189 

participants stopped by the total number of times all participants reached that combination of evidence. More 190 

saturated blues and yellows indicate a higher proportion of stopping across all participants. Dashed grey lines 191 

indicate the optimal stopping boundaries. b-c) Probability of stopping given observed data for two example 192 

participants. d) Comparison of each participant to optimal behavior. Each trial for each participant was binned into 193 

either under-, over- or optimally sampled. The proportion of trials in each bin is represented by the distance to each 194 

corner of the simplex and by color. Color mappings for e-f were drawn from d. e) Across participants, the higher the 195 

average number of samples a participant tended to draw before stopping, the higher the task accuracy. f) Across 196 

participants, the average number of samples predicted total earnings with an inverted-U shaped function. The gray 197 

boxes on e and f reflect confidence intervals around the performance range of an optimal model. For plots d-f, each 198 

dot reflects a single participant on each graph. 199 
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 200 

Figure 3. Tested information sampling strategies with model predictions and example representations. We 201 

hypothesized that information sampling patterns would represent one of four potential strategies. The left column 202 

indicates the description of the sampling behavior for each hypothesized strategy. The middle column reflects an 203 

example model prediction for choices given an example set of parameters. Gray portions indicated predicted choices 204 

to continue collecting information where yellow and blue areas indicate predicted choices for selecting a particular 205 

majority category (e.g., indoor or outdoor). More saturated areas of yellow and blue reflect choices with strong 206 
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evidence for that choice while less saturated areas reflect choices for which the evidence is weaker. The last column 207 

represents examples of each strategy seen in our participant data. Gray lines indicated participant choices to continue 208 

sampling and dots represent the decision to select a majority (yellow = choose indoor, blue = choose outdoor). 209 

Colored bars are illustrative to exemplify each strategy.  210 

 211 

Models of information sampling strategies. 212 

Our next analysis investigated how participants sampled and integrated information 213 

towards a decision. We first identified four potential information sampling strategies that relied 214 

on a range of optimal and heuristic approaches (see Supplemental Methods: All Sampling 215 

Strategies). Our first strategy was a probabilistic modification of the optimal Ideal Observer (see 216 

Supplementary Methods: Expected Value Model Formulation). This strategy relied on the same 217 

Bayesian updating and inference to estimate the expected value of each option but was adapted 218 

to allow for inherent noise in participant decision making as well as to account for cost accrual 219 

mechanisms that deviated from objective costs accumulation (Cisek et al., 2009; Ditterich, 2006; 220 

Furl & Averbeck, 2011; Hauser et al., 2018) (see Methods). The cost mechanism that best 221 

accounted for participant behavior was similar to the strategy from Hauser et al., (2018), in 222 

which subjective costs were accumulated nonlinearly, representing a growing urgency across 223 

information sampling to select a final option (Cisek et al., 2009). As such, the Expected Value 224 

Urgency Threshold (EV-UT) strategy predicted that participants would sample until the value of 225 

an option surpassed the value of continuing to gather information, and that the value of 226 

continuing would sharply decline after the urgency threshold was met (Fig. 3, EV-UT).  227 

The next two strategies were probabilistic adaptations of two common heuristics. The 228 

first, Evidence Difference Heuristic (ED), was a heuristic that assumed participants tracked the 229 

continuous signed difference in evidence between the two categories towards a threshold (e.g., “I 230 

sample until one category has 4 more than the other”). This strategy predicted that participants 231 

approach information sampling insensitive to the number of images sampled and implies that the 232 

stopping boundary is stationary and constant across sampling (Fig. 3, ED). The second, Costs 233 

Accrued Heuristic (CA), was a heuristic that assumed, participants used the continuous number 234 

of samples drawn as a proxy for the costs accrued from sampling and only a binary 235 

representation of the difference in evidence to inform choice (e.g. “I sample 5 images and then 236 

choose the majority). Similar to the first, this strategy predicted a stationary threshold that 237 
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triggered the end of sampling, but now, bound to the number of samples drawn, implying that the 238 

magnitude of evidence mattered less (Fig. 3, CA).  239 

The last tested strategy, Evidence-by-Costs Tradeoff (ED-CA), was a combination of the 240 

two heuristic approaches, such that participants used continuous representations of both the 241 

difference in evidence between the categories and the number of images collected to inform their 242 

choices. These two quantities were then linearly combined towards a threshold. This strategy 243 

predicted that as the number of samples collected increased, the difference needed between the 244 

evidence in favor of one category over the other would decrease, representing a non-stationary 245 

but constant tradeoff between the two informational sources (Fig. 3, ED-CA).  246 

Across these four strategies, there were striking visual distinctions in the types of choices 247 

each predicted (Fig. 3, Model Example). Furthermore, models were distinguishable from one 248 

another, as shown by model recovery such that choices generated by each model were best fit by 249 

the model that generated them (see Supplemental Methods: Parameter Recovery and Model 250 

Recovery). Thereby, we were not only able to detect descriptive differences in sampling 251 

strategies but were also able to draw inferences about the underlying process guiding information 252 

sampling (Fig. 3).  253 

 254 

Moment-by-moment sampling decisions were best predicted by an Evidence-by-Costs (ED-CA) 255 

strategy. 256 

We next fit each participant’s data to each of the four sampling strategies outlined above.  257 

Participants overall were best fit by the Evidence-by-Costs Tradeoff (ED-CA), which used 258 

continuous representations of both the difference in evidence between the categories and the 259 

number of images collected to inform their choices. This strategy outperformed the three other 260 

proposed strategies such that of our 94 participants, 83 were best fit by the ED-CA strategy (Fig. 261 

4a). A repeated-measures ANOVA confirmed that the ED-CA strategy had significantly lower 262 

BIC scores (F(3, 279) = 81.17, p < 0.001) compared to the CA strategy (t(93) = -14.65, p < 263 

0.001), the ED strategy (t(93) = -10.92, p < 0.001), and the EV-UT strategy (t(93) = -11.32, p < 264 

0.001) (Fig. 3b-d). There was no difference in fit between the ED strategy and the EV-UT 265 

strategy (t(93) = 1.17, p = 0.24). The CA strategy fit the worst of all four strategies tested (ED 266 

and CA: t(93) = -4.83, p < 0.001; EV-UT and CA: t(93) = -5.40, p < 0.001).   267 
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Results from the ED-CA strategy revealed that participants were sensitive to the costs of 268 

increased sampling (i.e., number of samples drawn) and the magnitude of evidence favoring one 269 

category over the over (i.e., signed difference in samples). We next sought to test whether there 270 

was a linear tradeoff between the difference in evidence for each category and the number of 271 

samples. 272 

 273 

 274 

Figure 4. Evidence-by-Costs (ED-CA) strategy outperforms both simpler heuristics and expected value 275 

models in predicting decisions. BIC scores were calculated for each participant under each model. a) We ranked 276 

BIC scores from lowest (better fit) to highest (worse fit). Each participant represents a column on the heatmap. A 277 

rank of 1 indicates the best fitting model for that participant. Green represents the Evidence-by-Costs (ED-CA) 278 

strategy, orange represents the Expected Value Urgency Threshold (EV-UT) strategy, blue represents the Evidence 279 

Difference Heuristic (ED) strategy, and purple represents Costs Accrued Heuristic (CA) strategy. b-d) Plotted BIC 280 

scores for the ED-CA strategy compared to all other strategies. Each dot reflects a single participant. Dots are color 281 

coded by which model had the lower BIC score between the two models. b) BIC scores plotted between ED-CA and 282 

EV-UT. c) BIC scores plotted between ED-CA and ED. d) BIC scores plotted between ED-CA and CA.  283 

  284 

Stopping criteria were non-stationary within a trial but stationary across trials.  285 

The Evidence-by-Costs (ED-CA) strategy aggregates the currently available information 286 

and compares it to a decision threshold that reflects a participant-specific level of information 287 
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needed to terminate sampling. A prediction of this strategy is that, over the course of a trial, the 288 

contributions of total samples drawn and evidence difference can trade off against each other. 289 

We found that the number of samples drawn negatively predicted evidence difference at the time 290 

of stopping (𝛽𝑠𝑎𝑚𝑝𝑙𝑒𝑠: -0.0722, t(66.6) = -6.93, p < 0.001 CI [-0.09, -0.05]) and that the majority 291 

of our participants (N=78/94) evinced this negative relationship (Fig. 5). This result indicates 292 

that the more images sampled (and thus the higher the costs), the less the evidence difference 293 

must be in order to stop sampling, consistent with accounts of collapsing boundaries in evidence 294 

accumulation (Ditterich, 2006; Drugowitsch et al., 2012; Malhotra et al., 2017; Murphy et al., 295 

2016). We tested whether this relationship was better fit with the inclusion of a quadratic term, 296 

but that inclusion did not significantly improve model fit (𝜒2(1, 94) = 2.94, p = 0.09). 297 

Interestingly, the initial threshold for stopping is similar to that of the Ideal Observer model but 298 

quickly decreases as the trial progresses.   299 

 We also examined whether stopping criteria changed across trials in the task. We first 300 

investigated whether there were changes in stopping criteria (i.e., changes in participant’s 301 

average sampling number or evidence difference prior to stopping) or changes in stopping 302 

consistency between the first and second half of the task (i.e., changes in the standard deviation 303 

of samples drawn or evidence difference). None of the dependent measures were significantly 304 

different from the first to the second half of the experiment (all p > 0.05). Additionally, there 305 

were no significant differences in accuracy from the first to the second half of the task (p > 0.05), 306 

indicating that performance was relatively stable from trial to trial. Moreover, none of the 307 

dependent measures were significantly different as a function of the outcome of the previous trial 308 

(all p > 0.05). Collectively, these results suggest that behavior in this task was stable across 309 

trials. 310 

 311 
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 312 

Figure 5. Evidence difference and number of samples trade off. Individual slopes modeled through linear mixed 313 

effects model. As the number of samples increased, the difference in evidence needed to stop sampling decreased. 314 

Green lines represent participants with negative slopes (N=78) and grey lines represent participants with slopes 315 

greater than or equal to zero (N=16). The mean slope is represented by the bold green line. The optimal stopping 316 

threshold from the Ideal Observer, which stays constant throughout sampling, is represented as the dotted black line. 317 

Lines are truncated to reflect the minimal and maximal number of samples prior to stopping for a given subject. 318 

Estimates for each participant and the mean are taken from linear mixed effects model with maximum random 319 

intercept and slopes.  320 

 321 

Increasing reward stakes does not encourage use of more optimal strategy.  322 

Lastly, we investigated whether an increase in reward stakes shifted strategy use across 323 

our participants. We hypothesized that under high reward contexts, participants might expend 324 

more computational resources to sample more optimally (Bennett et al., 2019; Manohar et al., 325 

2015), thus participants’ behavior would be more similar to the Ideal Observer or be better fit by 326 

a strategy that relies on optimal value estimation (e.g., the EV-UT strategy). To test this, we split 327 

trials by reward condition within each participant and fit each subset of behavior to the ED-CA 328 

strategy and to the EV-UT strategy. We found that overall, the ED-CA strategy provided the best 329 

fit for the majority of our participants (N=69) across both high-reward and low-reward contexts. 330 

Of the participants that had different fits between high-stakes and low-stakes trials, there was not 331 
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a consistent pattern of change (EV-UT strategy provided a better fit under high-reward trials for 332 

7 participants and provided a better fit under low-reward trials for 12 participants) (See 333 

Supplementary Note 4, Fig. 3 for more detail).  334 

Similarly, changes in sampling as a function of reward condition did not encourage 335 

optimal behavior compared to the Ideal Observer. We found no difference in the proportion of 336 

trials in which participants sampled optimally across reward conditions (t(441) = 0.847, p = 337 

0.958). Instead, we see an increase in the relative number of over-sampling trials in high-reward 338 

contexts, compared to low-reward contexts (t(446) = 3.068, p = 0.023) (Fig. 6a). Follow-up trial-339 

by-trial analyses confirmed that participants sampled more images under high-reward compared 340 

to low-reward (𝛽𝑟𝑒𝑤𝑎𝑟𝑑= 0.503, t = 4.762, p = < 0.001 CI [0.29, 0.71]) (Fig. 6b) and required a 341 

larger evidence difference to stop (𝛽𝑟𝑒𝑤𝑎𝑟𝑑 = 0.147, t = 4.428, p < 0.001 CI [0.08, 0.21]) (Fig. 342 

6c). Despite the adjustments in sampling behavior under high-reward compared to low-reward, 343 

there was no difference in performance outcomes between the two conditions (𝛽𝑟𝑒𝑤𝑎𝑟𝑑= 0.02, t = 344 

0.25, p = 0.803). High-reward trials, thereby, did not encourage more optimal choices but 345 

instead, drove participants to simply adjust the threshold for stopping within their existing 346 

strategy. These adjustments, however, ultimately did not improve performance on high-reward 347 

trials. Our reward manipulation provides support that participants adopt a global policy for 348 

stopping behavior – and adjust that policy in different reward conditions – but do not 349 

systematically deploy different policies in different reward contexts.  350 

  351 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.17.492355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492355
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING TITLE: Flexible integration of cost and evidence during information sampling  

 16 

 352 

 353 

Figure 6. High reward stakes increase sampling but do not encourage more optimal behavior. Changes in 354 

behavior as a function of reward condition were assessed across three variables of interest: changes in the proportion 355 

of optimal choices, number of samples drawn, and the evidence difference at time of stopping. a) Both over- and 356 

under-sampling were significantly more common than optimal sampling. We also observed an interaction such that 357 

in high-stakes trials, participants over sampled more than in low-stakes trials. Error bars reflect standard error of the 358 

mean. b) Participants sampled more images under high stakes compared to low stakes. c) Participants waited for 359 

greater evidence differences in high-stakes trials compared to low-stakes trials. Each dot represents a participant; 360 

color coding indicates the condition with greater sampling. Dots closer to the diagonal indicate less change between 361 

conditions, while dots that deviate from the line indicate greater changes by reward condition. 362 

 363 

Discussion 364 

 Balancing the costs of gathering information with the desire to accurately choose 365 

outcomes represents a fundamental challenge for human decision-making. Various theoretical 366 

models of information sampling have been developed to explain how humans address this 367 

challenge, but these models tend to either emphasize resource-intensive optimal computations or 368 

efficient but rigid heuristics. Our results support an alternative perspective: information sampling 369 

relies on a computationally simple and flexible strategy that accumulates task-relevant 370 

information until a threshold is reached. This Evidence-by-Costs strategy also predicted other 371 

key features of sampling behavior, including the tradeoff such that more evidence was required 372 

when costs were low but that less evidence was required when accrued costs were high. In 373 

addition, we found that changing the reward value for a correct choice did not encourage more 374 

optimal behavior nor a switch to using more computationally expensive estimations. 375 
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Collectively, we concluded that humans flexibly adapt the information accumulation process to 376 

balance competing motivations for accuracy and cost minimization. 377 

Previous work has demonstrated that humans exhibit subjective biases in the computation 378 

and integration of accruing costs that limit the optimality of behavior (Cisek et al., 2009; Coenen 379 

& Gureckis, 2016; Furl & Averbeck, 2011; Hauser et al., 2017, 2018). However, these policies 380 

still assume that humans engage in the computational expensive estimations of the value of 381 

stopping and the value of continuing in the same manner as an Ideal Observer (Bossaerts & 382 

Murawski, 2017; Payzan-LeNestour & Bossaerts, 2011). The Evidence-by-Costs strategy 383 

provides a starkly simpler rule that reduces computational demands through limits both on the 384 

number of steps involved and the amount of information held in memory (Bossaerts & 385 

Murawski, 2017; H. A. Simon, 1990). It also provides a better account of behavior: instead of 386 

computing the probability of success in accordance with Bayesian inference, participants relied 387 

on a mechanism that estimated success by tracking the evidence difference between the two 388 

categories of images.  389 

 The use of an Evidence-by-Costs strategy was evident in the trial-by-trial behavior of our 390 

participants. Consistent with prior work (Ditterich, 2006; Malhotra et al., 2017; Murphy et al., 391 

2016), we found that there was a tradeoff between two quantities: as the number of samples 392 

(costs accrued) increased, the smaller the evidence difference needed to stop sampling. The 393 

existence of this tradeoff could reflect two possibilities. First, as more samples are drawn, 394 

individuals could be relying on smaller but more reliable differences between the majority and 395 

minority category. Although we cannot rule this possibility out completely, it is unlikely given 396 

that participants were kept blind to the true underlying distribution and thus the proportion of the 397 

samples not yet drawn was also unknown. Alternatively, this tradeoff could mean that the 398 

stopping threshold may be reached from different linear combinations of two quantities: a large 399 

number of samples or a large evidence difference, and individuals actively use both to inform 400 

stopping. The result is that as sampling continues and costs are accrued, people begin to 401 

prioritize different information – moving from an initial bias toward larger evidence differences 402 

toward a later bias against costs.  403 

Our results extend prior research positing tradeoffs between evidence and sampling costs, 404 

akin to the speed-accuracy tradeoff, to determine choice. Murphy et al. (2016) saw this tradeoff 405 

under conditions in which participants were pressed for time, yet our results suggest that this 406 
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trade-off can exist even without external time pressures. Additionally, Malhotra et al. (2017) 407 

found that the tradeoff between costs and evidence only existed when participants completed 408 

intermixed trials of varying difficulty, yet we show that the trade-off persists even when 409 

difficulty is fixed across trials. It is possible that our task, similar to that of Malhorta et al. 410 

(2017), had increased uncertainty because the distribution of images from either category was 411 

unknown to our participants. This could have encouraged a strategy that did not rely on a single 412 

information factor (e.g., evidence) to inform stopping. Additionally, our tradeoff appears linear 413 

in form, as opposed to exponential or sigmoidal, which are indicative of a growing urgency 414 

signal (Cisek et al., 2009). Unique to our results is that this tradeoff was predicted by the specific 415 

strategy (Evidence-by-Costs) individuals used to arbitrate between sampling and stopping. 416 

 We also found that increasing the financial stakes for a trial did not encourage adoption 417 

of a strategy that relies on optimal value estimation nor did it increased the likelihood of optimal 418 

behavior (i.e., participants did not move closer to the stopping decisions that would be made by 419 

an Ideal Observer (Achtziger et al., 2015)). Instead, we saw that participants were still best fit by 420 

the Evidence-by-Costs strategy. Behaviorally, participants in the high-reward condition over-421 

sampled, effectively raising the stopping threshold without changing the underlying 422 

computations; both drawing more samples and waiting until they achieved a larger difference 423 

between categories. This stands in contrast with prior work that suggested increasing monetary 424 

stakes can increase one’s motivational state, thereby encouraging the use of more optimal but 425 

expensive strategies (Bennett et al., 2019; Manohar et al., 2015) .  426 

Why might increased monetary stakes encourage behavioral adjustments but not push 427 

participants towards optimal behavior? One possible explanation is that conditions of equal 428 

difficulty but with higher monetary stakes could increase the effort put into the trial because of 429 

lower opportunity costs (Otto & Daw, 2019; Shenhav et al., 2013), but still not warrant the 430 

adoption of a completely new and expensive strategy. This is likely the case given that our task 431 

had intermixed high and low reward trials, such that participants would have to continually 432 

switch between strategies, which introduces cognitive costs (Luwel et al., 2009). Alternatively, 433 

our task was more difficult than prior information sampling paradigms because participants had 434 

to remember their previous samples – and thus the added memory demands might have deterred 435 

adoption of a more resource-intensive strategy. Although prior work has suggested that working 436 

memory capacity can impact the amount and use of information during information acquisition 437 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.17.492355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492355
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING TITLE: Flexible integration of cost and evidence during information sampling  

 19 

(Rakow et al., 2010), we did not measure the working memory capacities of our participants. 438 

Future research will need to explore how working memory demands and the cost of switching 439 

information sampling strategies shape stopping policies.  440 

This study raises an important set of questions regarding how individuals determine their 441 

idiosyncratic thresholds. Evidence-by-Costs sampling provides two unique informational 442 

components that contribute to stopping – and individual model fits revealed variability in how 443 

participants weighed information about evidence and costs. Specifically, variability in the 444 

weighting of evidence could reflect varying levels of confidence required for stopping across 445 

individuals, as seen in other work (Hausmann-Thürig & Läge, 2008). In line with prior work 446 

(Hauser et al., 2017, 2018; Juni et al., 2016; Otto & Daw, 2019; Petitet et al., 2021), we also see 447 

individual differences in sensitivity to accruing costs. Future work towards encouraging more 448 

optimal behavior can leverage our approach by specifically targeting informational components 449 

that most contribute to a person’s sub-optimal sampling behavior. For example, an individual 450 

who consistently over-samples might do so because they are more sensitive to accuracy (a higher 451 

threshold starting point) or because they are less sensitive to accruing costs (a shallower trade-off 452 

slope). The ability to arbitrate between potential sources of error could provide a more targeted 453 

prescription to ameliorating the cause of over-sampling. 454 

Moreover, our findings emphasize key directions for understanding sampling strategies 455 

themselves. First, additional research should identify and delineate strategies that do not 456 

completely conform to either heuristics or optimal behavior. A recent study (Korn & Bach, 457 

2018), demonstrated the use of both heuristic and optimal strategies (but not a combination of the 458 

two) across a foraging task, providing insights into factors that shape strategy selection; for 459 

example, higher levels of experienced uncertainty may push sampling toward optimality. 460 

Similarly, in our current study, the Evidence-by-Costs strategy did not specifically integrate 461 

components from the optimal strategy but was sensitive to the same information sources. 462 

Cataloging a more complete space of sampling strategies will advance our understanding of how 463 

humans select what information to attend to and how that information is transformed into 464 

potential actions.  465 

Future research should also explore how people determine what strategies to implement 466 

in different contexts. During information sampling, individuals not only decide how to balance 467 

sampling costs with accuracy but also contend with balancing the costs and benefits of exerting 468 
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control (Shenhav et al., 2013). Previous information sampling accounts have examined the 469 

impact of contexts such as changes in task difficulty (Coenen & Gureckis, 2016; Malhotra et al., 470 

2017) and changes in sampling costs (Hauser et al., 2018; Juni et al., 2016) in altering sampling 471 

behavior but have not specifically examined if these contexts changed the underlying strategy. 472 

We examined the context of varying reward stakes on information sampling and found that while 473 

individuals maintained the same underlying strategy between both contexts, reward increased the 474 

overall information that people gathered. Our results differ from that observed in a reinforcement 475 

learning task, where reward stakes resulted in a switch to a more intensive but optimal strategy 476 

(Bennett et al., 2019). Additional investigation is needed into how individuals use context to 477 

evaluate when to switch information sampling strategies and when to adapt an existing strategy. 478 

Prior work has indicated that humans can learn to use context to determine strategy selection 479 

(Lieder & Griffiths, 2017; Payne et al., 1988; Rieskamp & Otto, 2006); for example, experience 480 

with a problem leads to adoption of more heuristic strategies and can even direct selection 481 

amongst different heuristics (Rieskamp & Otto, 2006). Although we did not find any changes in 482 

strategy in the current study, our task involved a longer sampling process and fewer sampling 483 

episodes, thus making it harder for participants to explore a variety of strategies. Future work 484 

will need to investigate how much experience individuals need in order to use contextual factors 485 

to inform both the selection and implementation of information sampling strategies. 486 

Information sampling is a complex but ubiquitous challenge for decision makers. In the 487 

present study, we show that humans confront this challenge by adopting a strategy that balances 488 

the efficiency of heuristics but with increased flexibility. Specifically, our results demonstrate 489 

that unlike optimal strategies, humans are performing simple accumulations instead of 490 

computing expected values, and unlike heuristic strategies, humans are dynamically integrating 491 

information instead of using rigid rules. Future work expanding how humans build such flexible 492 

strategies and how individual differences determine the relative weighting of different elements 493 

of those strategies (e.g., reward sensitivity) will provide further insight into the mechanisms by 494 

which bounded rationality guides decision-making processes.   495 

  496 
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Methods and Materials 497 

 498 

Participants 499 

Participants (N = 105, Mean age = 26.14, SD = 4.79, 69 female) were recruited from the 500 

Durham community using flyers and online postings. Our demographic breakdown included 37 501 

participants who identified as White/Caucasian, 47 identified as Asian/South Asian, 14 identified 502 

as Black/African American, 3 identified as Hispanic/Latinx, and 4 identified as multi-503 

racial/ethnic. To participate, individuals had to 1) be within the age range of 18-50 years old, 2) 504 

have no history of neurological injury or disorders (including seizures and epilepsy), and 3) be 505 

fluent in English. Eleven participants were excluded from all analyses, three due to computer 506 

error and eight due to having unusable sampling data (failed to sample more than once on over 507 

25% of trials), leaving a final total of 94 participants. All participants received informed consent 508 

under the guidelines of Duke University’s Institutional Review Board. 509 

 510 

Procedure 511 

At the outset of each experimental session, participants provided informed consent, 512 

received task instructions (see Supplementary Methods: Task Instructions) before practicing the 513 

experimental task (Fig. 1). Participants returned to the laboratory approximately 24h later for to 514 

complete a surprise memory test for the images sampled during the first experimental task. 515 

Results for the memory test can be found in the Supplement (see Supplementary Methods: 516 

Memory Task, Descriptions, and Findings) but will not discussed in the main manuscript. 517 

Participants performed a modified version of the Information Sampling Task (Clark et al., 518 

2006) displayed using PsychoPy 2.7 (Peirce et al., 2019). Participants were told that on each trial 519 

there was a box that contained 25 images from one of two possible domains: scenes and objects. 520 

Each domain had two categories (scenes: indoor or outdoor, objects: living or non-living) and 521 

each image belonged exclusively to one category. Each trial contained images from only one 522 

domain. Images were all naturalistic photos collected from Google Image searches and scaled to 523 

the same size in pixels. 524 

On each trial, participants were tasked with identifying the underlying majority category 525 

for a given domain. Participants could sample images from the box serially until they felt they 526 

had enough evidence to select a majority category (max of 25 images per trial). Participants were 527 
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told that there would always be a majority category, but they were not told the true proportions 528 

of each image category and were instructed that the proportions could change between trials. The 529 

true proportion was kept constant at 60/40 for majority/minority categories (i.e., 15 of the 25 530 

images would be from the majority category). The order of the images was randomized. 531 

Participants performed trials under high ($5.00) and low ($1.00) reward stakes. Incorrect 532 

responses in both stakes conditions resulted in a reward of $0.00 for that trial. In addition, 533 

participants incurred a cost for each sample they made (2% of the max reward they could earn 534 

for that trial). Thus, participants had to balance their confidence in identifying the true majority 535 

against accruing sampling costs.  536 

At the start of each trial, a cue screen (2000 ms) appeared, informing participants of the 537 

image category judgment (e.g. indoor vs. outdoor or living vs. non-living) as well as the 538 

monetary reward available for a correct response (e.g. Correct Response = $1.00/Correct 539 

Response = $5.00, before sampling costs). They then viewed the sample screen, whereupon they 540 

had the option to either sample an image or make a final choice as to what category they thought 541 

predominated on the trial. If they chose to sample (by selecting the down arrow key), one image 542 

would immediately appear in the middle of the screen for 2500 ms (image screen). After the 543 

image disappeared, participants were returned to the sample screen. Images did not stay visible 544 

to participants after the 2500 ms presentation; thus, participants had to remember past images to 545 

guide their choices. At each instance of the sample screen, participants had 15 seconds to make a 546 

choice before they automatically advanced to the next trial, with the previous trial being marked 547 

as incorrect. This happened on approximately 0.003% of trials across all participants (17 out of 548 

5004 trials).  549 

Participants were free to sample as few or as many images as they deemed necessary to 550 

guess the more prevalent category. When participants decided to stop sampling, they indicated 551 

their decision about which category they felt predominated on that trial by choosing the box (by 552 

pressing either the right or left arrow key) that was associated with that category, which were 553 

displayed on either side of the sample button throughout the trial. After participants made their 554 

final choice, they were shown a feedback screen (2000 ms) that displayed if their guess matched 555 

the true majority in the box (e.g. “Correct”/ “Incorrect”).  556 

Participants completed 48 trials in the task. Trials were fully counterbalanced such that 557 

they saw an equal number of trials from either category, and each category was equally 558 
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represented in both high and low reward stakes. Additionally, each category had the same overall 559 

probability of winning. To ensure incentive compatibility, participants were paid for 4 trials, 560 

randomly chosen. Because the task was self-paced and participants varied in how many images 561 

they collected, the session length ranged from 11 minutes to 47 minutes (Mean time: 24.86 562 

minutes, SD: 7.63 minutes).  563 

 564 

Data Analysis  565 

To understand how participants determined when to switch from gathering information to 566 

selecting a final choice, we compared participants’ behavior using a series of computational 567 

models. We first measured how close each participant’s stopping choices were to the Ideal 568 

Observer (model-predicted optimal choices). We then fit each subject’s behavior to four 569 

sampling strategies. The first strategy, Expected Value Urgency Threshold (EV-UT), relied on 570 

expected value computations to inform choices. We used an adaptation of this strategy similar to 571 

Hauser et al., (2018), that suggested humans integrate costs non-linearly. In this strategy, the 572 

threshold to transition from sampling to selecting an option was both non-stationary and 573 

inconstant across the number of images collected. The second strategy, Evidence Difference 574 

Heuristic (ED), was a heuristic that assumed participants tracked the continuous signed 575 

difference in evidence between the two categories towards a threshold (e.g., “I sample until one 576 

category has 4 more than the other”). This strategy suggests that participants approach 577 

information sampling insensitive to the number of images sampled and implies that the stopping 578 

boundary is stationary and constant across sampling. The third strategy, Costs Accrued Heuristic 579 

(CA), was another heuristic that assumed, participants used the continuous number of samples 580 

drawn and only a binary representation of the difference in evidence to inform choice (e.g. “I 581 

sample 5 images and then choose the majority). Similar to the first, this strategy maintained a 582 

stationary threshold that triggered a decision to select an option but implied that the magnitude of 583 

evidence mattered less. The last strategy, Evidence-by-Costs Tradeoff (ED-CA), was a 584 

combination of the two heuristic approaches, such that participants used both continuous 585 

representations of the difference in evidence between the categories and the number of images 586 

collected to inform their choices. This strategy reflected a linear threshold that decreased as the 587 

number of samples collected increased, representing a non-stationary but constant tradeoff 588 

between the two informational sources. Detailed descriptions of the strategies are outlined below. 589 
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In all models, choices were assumed to be probabilistic and were all fit using a SoftMax 590 

function. To emphasize, participants were given the following information: each box on each 591 

trial contains a total of 25 unique images, the maximum reward value for a trial is either $5.00 or 592 

$1.00 and the cost per image is a constant 2% of the maximum reward available on a trial ($0.10 593 

for $5.00, $0.02 for $1.00), the proportion of images from either category is specifically withheld 594 

and participants are told that the proportion may change on a trial-by-trial basis.  595 

Optimality. To compare participant sampling behavior to that of an Ideal Observer, we 596 

first calculated the optimal stopping points using a model adapted from Hauser et al. (2018). 597 

Because the proportion of reward to costs was equivalent for high vs. low stake trials, the 598 

computations and optimal stopping points are the same across reward conditions. After each 599 

sample (𝑁𝑠𝑎𝑚𝑝), the optimal agent compares the value of stopping given the current evidence 600 

against the value of continuing to sample. In order to determine the value of each action, the 601 

agent computes the probability of success in selecting the correct category given the current 602 

evidence (i.e., the number of indoor (𝑛𝑖) and outdoor samples (𝑁|𝑠𝑎𝑚𝑝 − 𝑛𝑖) collected thus 603 

far). Because the true underlying distribution of indoor to outdoor images is unknown, the 604 

optimal agent must also estimate the underlying distribution (q) from which the samples are 605 

being drawn from. Then, it must compute the probability of success under each possible 606 

proportion of majority to minority images weighted by the likelihood that that is the true 607 

distribution (Eq. 1.1, 1.2). We set prior beliefs, 𝛼 and 𝛽, about the true underlying distribution 608 

equal to 1.  609 

 610 

 611 

The expected value of stopping is then computed by taking the probability of success of 612 

stopping multiplied by the reward ($5.00 for high stakes, $1.00 for low stakes) minus the accrued 613 

costs, c, per sample ($0.10 for high stakes, $0.02 for low stakes) (Eq. 2). 614 

 615 
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 616 

 The expected value of stopping is then compared to the expected value of continuing to 617 

sample. To compute the expected value of continuing to sample, the optimal agent calculates the 618 

expected value of stopping for each state using backward induction to solve for the Bellman 619 

equation (Bellman, 1957). Briefly, the expected value of continuing at timepoint 25 is equal to 0 620 

because no additional samples can be drawn. Thus, the expected value at timepoint 25 is equal to 621 

the expected value of stopping given all available evidence. Given a behavioral policy that 622 

always chooses the highest valued action, the value of all possible states at timepoint 24 (and 623 

prior timepoints) can then be calculated using backward induction. Thus, for each possible state, 624 

the expected value of continuing, averages over all potential future states, weighting them by the 625 

likelihood that that state will be reached (Eq. 3). 𝑠’ represents the next immediate state, which 626 

can either reveal another indoor image (i = 1) or an outdoor image (i = 0).  627 

 628 

 629 

To examine how participants’ behavior compared to optimal behavior, we binned each 630 

trial for each participant as either optimal, under-sampled, or over-sampled based on where each 631 

stopping decision fell compared to optimal. Because of the cost and reward structure of this 632 

specific task, optimal behavior followed an easily verbalized heuristic of “sample until a 633 

difference of 3 is achieved.” This heuristic fits with “fast and frugal” criteria of being 634 

computationally simple and relying on only a fraction of available information but still 635 

preforming optimally (Gigerenzer & Goldstein, 1996; Todd & Gigerenzer, 2000). Thus, optimal 636 

behavior could be achieved through multiple routes of computation. 637 

Expected Value Computation Strategy. We examined a probabilistic modification of the 638 

optimal strategy. This strategy relied on the same Bayesian updating and inference to estimate 639 

the probability of success given the available evidence but was adapted to allow for inherent 640 

noise in participant decision making as well as to test different cost accrual mechanisms (see 641 

Supplementary Methods: Expected Value Model Formulation). Prior research has documented 642 

that human deviation from optimality could arise from the accumulation of costs that are 643 
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different from the specified objective sampling costs (Cisek et al., 2009; Ditterich, 2006; Hauser 644 

et al., 2017, 2018). We therefore tested whether the cost per step (𝑐𝑠𝑡𝑒𝑝) was being subjectively 645 

accrued in either a linear (Eq. 5), or non-linear (sigmoidal, Eq. 6) manner, and if these 646 

outperformed the use of objective costs (Eq. 4). In equations 5, t represents the subjective scaling 647 

of objective costs. In equation 6, p represents the sample number where costs begin to 648 

accumulate. In all equations, R represents the reward condition, 0.02 represents the percentage of 649 

the max reward, which equates to the objective cost per sample. Overall, our non-linear cost 650 

accrual outperformed our other two models of cost (see Supplementary Methods: All Sampling 651 

Strategies). 652 

 653 

 654 

 To test the different models of cost, we isolated the impact of costs to the choice to 655 

continue sampling. To do so, we updated the action values for choosing each final option as well 656 

as the value of continuing to sample as such.  657 

 658 

 659 

  660 

 661 

 662 

These expected values were then transformed into probabilities using the following 663 

Softmax function with inverse temperature parameter, 𝛽, and irreducible noise parameter, 𝜉 (Eq. 664 

9). Importantly, this first family of models relied on the assumption that humans were still 665 
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performing the underlying Bayesian operations to determine their policies, albeit with noise in 666 

their choice process.  667 

 668 

 669 

 For all of the models tested within the Expected Value Computation framework, 670 

participant data was best fit by the subjective non-linear cost model, giving rise to the Expected 671 

Value Urgency Threshold strategy and replicating previous work (Hauser et al. 2018). Given our 672 

two reward contexts, we also tested whether participants adapted this strategy based on the 673 

reward available for that trial. To do so, we tested three separate modifications of the subjective 674 

non-linear Expected Value Computation strategy. In our first model, we fit separate models for 675 

each reward condition for each participant, suggesting that participants could have completely 676 

difference parameter values for each reward condition. In our second model, we fit one model 677 

for both reward conditions and included a parameter that scaled the reward value for low-reward 678 

trials to be between $1.00 and $5.00, suggesting that the parameter values for both conditions 679 

could be equivalent, but participants were still sensitive to the difference in reward outcomes. 680 

Our last model either through the same model under just one of the t the high reward condition 681 

models treated all trials as operating under the high-reward conditions and fit one set of 682 

parameters for all trials. This was our best fitting model, as such the best model from the 683 

Expected Value Computation strategy was one that included a subjective non-linear cost accrual 684 

and treated high and low-rewarded trials as the same (see Supplementary Methods: All Sampling 685 

Strategies).  686 

Evidence Difference Heuristic Strategy. Our second model, Evidence Difference 687 

Heuristic (ED), was a heuristic that assumed participants tracked the continuous signed 688 

difference in evidence between the two categories towards a threshold (e.g., “I sample until one 689 

category has 4 more than the other”). This strategy suggests that participants approach 690 

information sampling insensitive to the number of images sampled and implies that the stopping 691 

boundary is stationary and constant across sampling (Baumann et al., 2020; Korn & Bach, 2018; 692 

Shah & Oppenheimer, 2008; Herbert A. Simon, 1955; Tversky & Edwards, 1966). To fit this 693 

heuristic, we adapted the rule into a probabilistic account that used the signed difference in 694 

evidence drawn to predict choice. The signed difference in evidence between the current 695 
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majority and minority in the samples collected at each timepoint was submitted to a multinomial 696 

SoftMax regression along with a subject-specific intercept, 𝛽0, in order to produce a probability 697 

for each action (Eq. 10).  698 

 699 

 700 

Sample Number Heuristic Strategy. Our third model, Sample Number Heuristic (SN), 701 

was another heuristic that assumed, participants used the continuous number of samples drawn 702 

and only a binary representation of the difference in evidence to inform choice (e.g. “I sample 5 703 

images and then choose the majority). Similar to the first, this strategy maintained a stationary 704 

threshold that triggered a decision to select an option but implied that the magnitude of evidence 705 

mattered less. Identical to our Evidence Difference Heuristic Strategy, to fit this heuristic, we 706 

adapted the rule into a probabilistic account that used the number of samples drawn and a 707 

binarized difference in evidence to predict choice. These variables were submitted to a 708 

multinomial SoftMax regression along with a subject-specific intercept, 𝛽0, in order to produce a 709 

probability for each action (Eq. 11).   710 

 711 

 712 

 713 

Evidence-by-Costs Tradeoff (ED-CA) Strategy. Our third series of models were built on 714 

the assumption that participants’ decisions to continue sampling or stop and commit to a 715 

category could be described by a strategy that depended on multiple forms of information but did 716 

not require the computational complexity of optimal strategies. Specifically, the Evidence-by-717 

Costs Tradeoff (ED-CA) strategy, was a combination of the above heuristic strategies, such that 718 

participants used both continuous representations of the difference in evidence between the 719 

categories and the number of images collected to inform their choices. This strategy reflected a 720 

linear threshold that decreased as the number of samples collected increased, representing a non-721 

stationary but constant tradeoff between the two informational sources. To fit this model, both 722 

sample number and the signed difference in evidence were submitted to a multinomial SoftMax 723 
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regression along with a subject-specific intercept, 𝛽0, in order to produce a probability for each 724 

action (Eq. 12).  725 

 726 

 727 

 728 

Similar to the Expected Value Computation model, we were also interested in whether 729 

participants treated information similarly across the different reward conditions. To test if reward 730 

significantly changed model fits, we tested two different model iterations. First, to test if 731 

participants were using completely difference parameter estimates for the different reward 732 

conditions, we split participant trials into high- and low-reward trials and fit each subset of trials 733 

to our SoftMax multinomial regression (Eq. 12). We then compared the difference in parameter 734 

values for high- vs. low-rewards. Second, to test if reward independently modified choice but did 735 

not impact the weight of individual information quantities, we added an additional reward 736 

parameter into the original SoftMax multinomial regression. Interestingly, parameter values were 737 

comparable across the two reward conditions and adding reward as an independent parameter did 738 

not improve model fit beyond Eq. 12. Thus, the best fitting model from the ED-CA Tradeoff 739 

strategy was one that also treated high and low-rewarded trials as the same (see Supplementary 740 

Methods: All Sampling Strategies).  741 

Model Comparison. For each model, we optimized the parameters to maximize the log 742 

likelihood for each participant individually. We used SciPy’s standard optimize.minimize 743 

function to minimize the negative loglikelihood of the observed choices. Parameters for our 744 

Optimal Stopping were bounded based on previous studies (p: [0-25] for sigmoidal, p: [0, 0.2] 745 

for linear, 𝛽: [1,10], 𝜉: [0, 0.5]) (Hauser et al., 2018) and both our Heuristic and Evidence-by-746 

Cost models were bounded based on preliminary mixed effects multinomial regression 747 

[𝛽1(samples drawn): [-1,5], 𝛽2(evidence difference): [-4,8], 𝛽3(reward context): [-5,8]). In every 748 

case, we ensured the best fitting parameters each fell within these boundaries. We fit each 749 

participant 10 times per model to ensure convergence and stability of best fitting parameters. 750 

To compare participants’ fits from our models, we first took the top performing models 751 

from each strategy if a strategy had more than one iteration before examining cross-group 752 

comparisons. All models in the final group were compared using both Akaike Information 753 
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Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978) 754 

scores. To examine patterns of best model fits on the group level we ran a repeated measures 755 

ANOVA to determine if participant-specific AIC or BIC scores differed significantly amongst 756 

models. Distributions of AIC and BIC scores per top performing can be found in the Supplement 757 

(see Supplementary Note 3, Figure 2).  758 

 759 

Statistics. All other statistics are stated in the text and figure captions. Normality was not 760 

directly tested because of our large sample sizes, but unless otherwise noted, data were assumed 761 

to be normally distributed and individual data points are provided in the figure scatterplots. 762 

 763 

Programming environments. Python 3 was used to run information sampling computation 764 

models and make data plots and figures. R, version 4.0.5, was used to calculate statistics (R Core 765 

Team, 2017). 766 

 767 

Code availability 768 

Requests for the data can be sent via email to the corresponding author. 769 

 770 

Data availability 771 

Requests for the code used for all analyses can be sent via email to the corresponding author. 772 

  773 
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