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Key points
• Information and events that are relevant for goal attainment are preferentially remembered over mundane experiences.

• Neural systems underlying reward and motivation signal the value of information, resulting in release of neuromodulatory
neurotransmitters.

• Dopamine is a neuromodulator that is both central to reward and motivation and essential for stable long term memory
formation.

• Understanding interactions between memory and reward systems can provide a pathway for understanding how ‘valuable’
information is prioritized.

• Studies in both humans and non-human animals suggest that dopaminergic midbrain modulates hippocampal function to
shape memory contents and form.

• We review empirical studies for evidence of midbrain-hippocampal interaction as a neural mechanism of adaptive memory
formation, relating it to theoretical frameworks and translational implications.

1 Introduction

We draw on memories of our past experience to guide future decisions and behaviors. To enable effective access to relevant
memories, our brain needs to adaptively prioritize information that may be important for attaining future goals. How does the
brain decide what experiences are transformed into enduring memory traces? What mechanisms determine the form of memories to
support future adaptive behavior? A key to addressing these questions is to understand how the brain assigns ‘value’ to information,
and how this value signal is subsequently translated into a signal for learning. Research in neuroscience has generated a substantial
body of work regarding reward, motivation, and memory systems in the brain. In the present chapter we explore their interactions,
focusing on the interaction between the ventral tegmental area (VTA) as implementing a “reward value” system and its impact on
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2 Interactions between memory and reward systems
the hippocampus, an exemplary memory system. The goal of the current chapter is to provide an overview of an adaptive memory
system in which motivationally relevant information is prioritized and available to guide future behavior.

In the first section we examine neurobiological systems implicated in representing and predicting rewards and in motivation,
focusing on the role of VTA dopamine. In the second section, we discuss how anatomical properties of the hippocampus may
determine dopaminergic influences on its function. In the third, we review theoretical accounts of how VTA-Hippocampal
interactions can influence learning, how these relate to reward, and other potential mechanisms to be considered. In the fourth,
we summarize the human evidence of reward effects on different stages of memory processing, focusing on encoding, consol-
idation and retrieval of episodic memories. In the fifth, we discuss the clinical relevance of dysfunction in reward systems as it
relates to memory and other brain and behavioral disorders. In the sixth, we consider potential therapeutic interventions, and
finally, we identify future directions and open questions to be resolved.
2 Reward and motivation in the brain

The ventral tegmental area (VTA) is a midbrain nucleus containing dopamine neurons that project widely across the brain.
Dopaminergic projections from the VTA can be broadly separated along two pathways—the mesocortical pathway which projects
to prefrontal, motor and sensory regions, and the mesolimbic pathway which projects to the striatum and hippocampus.

Dopaminergic projections from the mesolimbic circuits play a pivotal role in supporting reward and motivation. Often referred
to as the ‘pleasure molecule’ in popular media, dopamine has long been identified for its role in supporting reward processing and
motivated behavior. While accumulating evidence over the past decade has further illuminated the importance of dopamine for
learning and memory formation, a gap remains to be bridged—how is the mnemonic role of dopamine related to its role in reward
and motivation? Here, we discuss how the dopaminergic midbrain is implicated in motivation and reward processing, and
consequently, how this can further support adaptive learning and memory formation.

While early work on dopamine largely focused on its role in supporting motor functions, later work implied that dopamine may
be more important for supporting the motivation to initiate action, rather than the actual execution of action (Wise, 2004). Causal
evidence for the role of dopamine in supporting motivation has been shown using pharmacological suppression of dopamine, with
multiple studies demonstrating that dopamine antagonists reduce the initiation of goal-directed action, but do not impair the
motor capacity for action (Berridge and Robinson, 1998; Wise, 2004). This was further supported by recordings of dopamine
neurons in monkeys, showing that action initiation was preceded by phasic firing of dopamine neurons, suggestive of its role in
behavioral activation (Schultz, 1986; Schultz and Romo, 1990).

Because these phasic responses changed over time, it was proposed that the initially observed dopaminergic regulation of
motivated behavior may be one facet of a more generalized role for dopamine in reward learning and the reinforcement of actions
leading to reward (Salamone and Correa, 2012; Schultz, 1998; Walton and Bouret, 2019). According to this account of reinforce-
ment and reward learning, phasic dopamine bursts function as a neurobiological equivalent of a reward prediction error (RPE)
signal that represents the deviation between the actual and an expected outcome (refer to Section 4 for further discussions of RPE as
a canonical learning signal). This proposal was based upon observations during associative learning in which the firing properties of
dopamine neurons change as a cue-reward pairing is learned (Fig. 1). Prior to learning, dopamine neurons in the VTA show a
transient burst of increased firing following the receipt of reward, consistent with a role as a reward processing signal. However, as
the reward becomes more predictable, dopamine neurons no longer respond to the presentation of an expected reward, but instead
Fig. 1 Schematic depiction of VTA dopamine firing related to reward anticipation and prediction errors. Prior to learning (Pre-learning), phasic firing of VTA
dopamine neurons is observed during reward receipt. When the predictive association of the cue-reward pairing is acquired, phasic firing of dopamine neurons is
observed during cue presentation, rather than during the receipt of an expected reward. Phasic firing of dopamine neurons is also sensitive to the magnitude of
reward, increasing when reward is greater than expected (positive reward prediction error) and decreasing (relative to baseline) when reward is smaller than
expected or omitted (negative reward prediction error). Recent work has also identified ramping activity, where dopamine neurons exhibit increase in firing with
increasing proximity to an anticipated reward. This may be most prominently observed when there is uncertainty in reward expectations.
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show increased bursting to the reward predicting cue (Schultz et al., 1997). Such a shift in firing, from after outcomes to after cues,
has been proposed to reflect a reinforcement learning mechanism that strengthens behaviors leading to rewards. These dopamine
neurons have also been shown to exhibit sensitivity to the magnitude of rewards, increasing their firing when a reward is larger than
expected, and conversely, decreasing their firing (relative to baseline) when an expected reward is omitted (Bayer and Glimcher,
2005; Schultz et al., 1997). A causal role for dopamine in associative learning (supporting the anticipation of reward), including
computation of its expected value, has been shown using pharmacology and optogenetics. In particular, the disruption of phasic
dopamine firing can impair the acquisition of stimulus associations (Flagel et al., 2011; Tang et al., 2020), while the stimulation of
phasic firing may be sufficient for the acquisition of associations (Sharpe et al., 2017, 2020; Steinberg et al., 2013; Tsai et al., 2009).
While here we primarily focus on the role of dopamine in reward processing, dopamine has also been implicated in avoidance of
aversive stimuli (e.g., Fadok et al., 2009; Salamone, 1994; for detailed discussion refer to Bromberg-Martin et al., 2010; Salamone
and Correa, 2012).

While the burst firing following surprising rewards and other events proved compelling for researchers, dopamine neuronal
activity fluctuates over different timescales. The increased burst firing described above is referred to as a Phasic response. It has been
argued that higher likelihood of reward in the environment and thus frequency of phasic responses, should cumulatively result in
increased background or residual dopamine availability, (Niv, 2007; Niv et al., 2005), which may signal the value of effort in the
current context (Cagniard et al., 2006; Hamid et al., 2016); “tonic dopamine” is sometimes used to refer to this residual dopamine
availability. In addition, dopamine neurons have a baseline level of spontaneous firing, often referred to as Tonic activity (Grace
and Bunney, 1984; Niv et al., 2007). When they are released from their baseline inhibition, they increase their tonic activity and
increase their likelihood of bursting (such disinhibition occurs following hippocampal activity, for example in response to novelty).
Phasic and tonic activity have been shown to be dissociable and their selective disruption produces dissociable behavioral outcomes
(e.g. Grieder et al., 2012; Zweifel et al., 2009). Beyond phasic and tonic activity, recent works have also identified Ramping activity,
in which dopamine neurons exhibit a gradual increase in firing with increasing spatial or temporal proximity to reward (Farrell
et al., 2022; Howe et al., 2013; Mohebi et al., 2019). Such ramping activity has been attributed with various potential functions,
including tracking of estimated value (Kim et al., 2020), state uncertainty (Mikhael et al., 2022), gain control (Lloyd and Dayan,
2015), and motivation (Sarno et al., 2022). The mechanisms of ramping activity continue to be debated and further studies are
required to clarify its behavioral significance (Gershman, 2014; Kim et al., 2020; Lerner et al., 2021; Lloyd and Dayan, 2015; Song
and Lee, 2020).

Dopamine receptors are broadly classified into two subtypes: D1-like (D1/D5) and D2-like (D2/D3/D4) receptor families.
Based on their coupling to second messenger systems, they are associated with mainly increasing and decreasing neural activity,
respectively (Seamans et al., 2001; Trantham-Davidson et al., 2004; but see Leonard et al., 2003; Undieh, 2010). These subtypes also
show different affinity for dopamine, which has been thought to contribute to differential effects of tonic and phasic VTA activity.
Affinity for dopamine is orders of magnitude higher for D2-like than D1-like receptors, suggesting differential sensitivity to
extracellular dopamine concentrations and thus the dynamics of VTA activity. While occupancy of high-affinity D2-like receptors
would reflect increased tonic activity, it was thought that low-affinity D1-like receptors would be insensitive to these differences and
register only phasic activity (Dreyer et al., 2010). However, recent evidence that incorporates the slow unbinding rates seen by both
receptors suggests that D1 receptors are similarly affected by fluctuations in tonic dopamine and by dopamine ramps (Hunger
et al., 2020).

Accruing evidence continues to reveal the complexities of dopaminergic signaling, with dopamine neurons signaling a diverse
range of motivationally significant events, e.g. saliency (Horvitz, 2000), sensory prediction errors (Stalnaker et al., 2019; Takahashi
et al., 2017), and also to unexpected omission of rewards (Ishino et al., 2023). As a result, the evidence supports moving beyond a
simplistic view of dopamine as signaling reward, or even reward prediction error. It remains clear, nonetheless, that dopamine sits at
a nexus linking reward, motivation and learning. In the following section, we discuss the anatomy of midbrain projections, and
consider their significance for the modulation of learning and memory in the hippocampus.
3 Dopamine in the hippocampus

The medial temporal lobe (MTL), encompassing the hippocampus proper and its surrounding neocortex (including the para-
hippocampal cortex, perirhinal cortex, entorhinal cortex and subiculum) is well-documented to be critical for episodic memory,
although the exact role it plays remains in question (Davachi, 2006; Eichenbaum, 2017; Simons and Spiers, 2003; Squire et al.,
2004). Regions across the MTL are thought to support different forms of memory representation. The parahippocampal and
perirhinal cortices of the neocortical MTL are thought to support representations of context and item respectively, while the
hippocampus is theorized to support relational information, binding discrete representations into integrated representations
(Brown and Aggleton, 2001; Davachi et al., 2003; Davachi and Wagner, 2002; Diana et al., 2007; Eichenbaum, 2000; Ranganath
and Ritchey, 2012). While there is evidence that dopamine influences memory processes across the entire MTL, the following
section will focus primarily on the hippocampus, given the limited investigation to date of dopaminergic influence in the
neocortical MTL.

Converging evidence from humans and animals supports a role for dopamine as a critical modulator of hippocampal functions
(Edelmann and Lessmann, 2018; Jay, 2003; Lisman et al., 2011; Lisman and Otmakhova, 2001; Shohamy and Adcock, 2010).
Anatomical studies have shown that dopamine receptors are present in the hippocampus (Beaulieu and Gainetdinov, 2011;
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Gasbarri et al., 1997; Yu et al., 2019), and dopaminergic neurons from the midbrain project directly to the hippocampus (Gasbarri
et al., 1994a; Gasbarri et al., 1994b; Samson et al., 1990). Indeed, dopamine has been shown to be a necessary precursor for synaptic
plasticity in the hippocampus (Frey et al., 1990, 1991; Li et al., 2003; Otmakhova and Lisman, 1996, 1998) and to be necessary for
the persistence of long-term memories (Frey et al., 1990; Frey and Morris, 1997; Huang and Kandel, 1995; Rossato et al., 2009;
Sajikumar and Frey, 2004; Swanson-Park et al., 1999). While the sparsity of midbrain projections to the hippocampus (contrasting
with the dense projections to the striatum), has led to ongoing contentions regarding the primary source of hippocampal dopamine
(McNamara and Dupret, 2017), stimulation of the VTA alters transmission in the Schaeffer collaterals between CA3 and CA1 (Rosen
et al., 2015), and lesion studies have shown that levels of dopamine in the hippocampus are reduced following ablation of VTA
projections (Scatton et al., 1980). Despite recent evidence for the locus coeruleus (LC) as an alternate source of hippocampal
dopamine (Kempadoo et al., 2016; Takeuchi et al., 2016), other recent studies have continued to demonstrate the significance of
VTA-hippocampal pathways for memory formation (Tsetsenis et al., 2021). Further work is required to clarify the conditions
promoting dopaminergic modulation of hippocampus by the LC or the VTA and their dissociable contributions to memory
formation.

Further contributing to this complexity, the hippocampus is not a homogenous structure, and dopaminergic modulation from
the midbrain likely varies across its extent due to anatomical variation over subfields and along its longitudinal axis. Anatomical
tracing in rodents has shown that VTA neurons might project more strongly to the ventral hippocampus, which is most analogous to
the anterior hippocampus in humans (Oades and Halliday, 1987; but see Edelmann and Lessmann, 2018). While the innervation
and relative receptor distribution vary significantly across species (Shohamy and Adcock, 2010), suggesting caution in extrapolating
rodent data, neuroimaging studies in humans have also shown preferential anatomical (Elliott et al., 2023) and functional (Kahn
and Shohamy, 2012) connectivity between the VTA and the anterior hippocampus. Notably, the distribution of dopamine receptor
types has been shown to vary across hippocampal subfields and across the longitudinal axis of the hippocampus (Edelmann and
Lessmann, 2018; Wei et al., 2018). As previously discussed, differences in dopamine binding affinity for receptor subtypes has been
thought to influence sensitivity to different concentrations of dopamine and thus timescales of dopamine activity, but recent
modeling that incorporates the slow unbinding rates seen by both receptors suggests that both receptor families would be affected
by fluctuations in tonic dopamine and by dopamine ramps as well as phasic responses (Hunger et al., 2020). The striatum, where
dopamine receptors are closely apposed to the abundant dopaminergic projection terminals, is set up to rapidly detect the transients
associated with phasic activity (Edelmann and Lessmann, 2018). In contrast, the hippocampus and other cortical regions may not
be able to resolve the timing of transients because their sparse VTA innervation offers terminals that are more distant from receptors.
This anatomical constraint implies that even though its receptors are predominantly D1 receptors, slower changes in extracellular
dopamine would be the primary meaningful signals from VTA to the hippocampus, implying mechanisms for memory modulation
over longer timescales.

In the following section, we briefly examine the role of dopamine in the regulation of synaptic plasticity, focusing on its
influence on long-term potentiation (LTP), the cellular mechanism thought to underlie learning and long-term memory.
3.1 Dopaminergic modulation of neural plasticity

At the cellular level, traces of learning are primarily observed as changes in synaptic strength in the form of long-term potentiation
(LTP) and long-term depression (LTD). Dopamine has been shown to be essential for both LTP and LTD. Since the relation of LTD
and memory formation is not well understood (refer to Stacho and Manahan-Vaughan, 2022 for a review on the potential role of
LTD in learning and memory formation), we focus the following discussion on LTP.

Dopamine can exert significant influence on both early- (Otmakhova and Lisman, 1996) and late-LTP (Frey et al., 1993). Both
processes are thought to underlie long-term memory formation in the hippocampus. Studies in animals have shown that the
activation of D1 dopamine receptors in the CA1 subfield can lower the threshold for LTP induction (Li et al., 2003; Swant and
Wagner, 2006), increase the magnitude of LTP (Otmakhova and Lisman, 1996), inhibit depotentiation (Otmakhova and Lisman,
1998), and induce protein synthesis required for late-LTP (Huang and Kandel, 1995). Indeed, stabilization of LTP for long-term
memory has been shown to require activation of D1 receptors in the hippocampus (Frey et al., 1990; Frey and Morris, 1997; Huang
and Kandel, 1995; Rossato et al., 2009; Sajikumar and Frey, 2004; Swanson-Park et al., 1999). While these studies have primarily
focused on the CA1, this is not the only region influenced by dopaminergic modulation, and similar effects have been observed in
the dentate gyrus (Kulla and Manahan-Vaughan, 2000; Kusuki et al., 1997).

Beyond a direct influence on LTP, dopamine can also influence neural plasticity through the modulation of
“metaplasticity”—mechanisms that regulate the likelihood of LTP formation (Abraham, 2008; Edelmann and Lessmann, 2013;
Sheynikhovich et al., 2013). One way in which dopamine can influence metaplasticity is through synaptic tagging (Frey and Morris,
1997, 1998). In the ‘synaptic tag and capture’ account, strong stimulation resulting in dopamine release can increase the likelihood
of LTP for weak stimulation occurring in close temporal proximity, resulting in long term plasticity from both the strong and the
weak stimulation (for extended discussions see Dunsmoor et al., 2022; Frey andMorris, 1998; Redondo andMorris, 2011; Rogerson
et al., 2014). These findings highlight a temporally extended influence of dopamine on learning and memory formation, which we
will further discuss in the later section on Memory Consolidation (Section 5.2).
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3.2 Dopaminergic modulation is evident in activity-dependent representations

Information representation in the hippocampus has been shown to exhibit sensitivity to motivation and reward expectation, and
the influence of dopaminergic modulation. This modulation is evident from changes in representation of the information coded in
neural activity, specifically in the activity of ‘place cells’ (Moser et al., 2008; O’Keefe, 1976; O’Keefe and Dostrovsky, 1971). Place
cells are neurons in the hippocampus which have been shown to exhibit selective firing to specific locations in the environment,
i.e. their ‘place fields’ (Best et al., 2001; Eichenbaum et al., 1999). Place cells in the hippocampus exhibit greater sensitivity to
locations that have greater motivational significance, including those relevant for attaining task goals and rewards. More place cells
have place fields for those locations, amplifying their representation in memory (Hollup et al., 2001; Krishnan et al., 2022; Mamad
et al., 2017). Recent work has shown that such enhanced representation for motivationally significant places is supported by
ramping activity of VTA dopamine neurons prior to expected rewards. (Krishnan et al., 2022), demonstrating modulation of
hippocampal states by reward anticipation.

The stability of hippocampal place fields over time has also been used to indicate memory representation. Place fields for a given
cell change over time; they can represent more than one place as animals move to new environments (O’Keefe and Conway, 1978).
Within the same environmental context, the long term stability of a place field has been considered as an indication of memory
representation, in that place field stability has been shown to correlate with spatial memory performance (Kentros et al., 2004;
Kinsky et al., 2018; Muzzio et al., 2009). Place field stability has also been shown to be dopamine-dependent. In particular, place
field stability was disrupted following the application of D1/D5 receptor antagonists and enhanced by agonists (Kentros et al.,
2004), and also when neural activity in the VTA was disrupted (Martig and Mizumori, 2011).

To summarize, reward anticipation, VTA inputs, and dopamine D1-like receptors have been shown to influence place field
sensitivity and stability in the hippocampus. Together, these findings set the stage for understanding how dopamine can modulate
hippocampal functioning, and how this might provide a basis for adaptive episodic memory formation in humans. Moving beyond
local neurobiological mechanisms, the following section reviews systems-level theoretical frameworks, discussing how different
contexts and events can modulate dopaminergic response to support adaptive memory formation for motivationally salient
experiences.
4 Modulation of memory circuits by dopaminergic reward systems

The diverse projections of the midbrain dopaminergic circuitry enable modulation of learning via the concurrent engagement of
distinct mechanisms that can operate across multiple timescales. In the following, we discuss theoretical models and frameworks
regarding how the mesolimbic reward circuits can modulate learning and memory formation in the MTL.
4.1 Reward prediction errors: A signal for learning and episodic memory?

Despite prolific investigations on the role of dopamine in both reinforcement learning and episodic memory, in early work these
were seen as depending on distinct memory systems that relied on dissociable brain circuits, and as a result, their study remained
largely independent. The recent confluence of research on episodic memory and reinforcement learning includes studies attempting
to draw a connection between dopamine-eliciting reward prediction errors andmemory formation (Jang et al., 2019; Rouhani et al.,
2023; Sinclair et al., 2023; Sinclair and Barense, 2019; Wimmer et al., 2014); however, findings thus far have been mixed.

Reward prediction error (RPE), defined as the difference between the magnitude of a predicted reward and an actual outcome, is
the canonical learning signal in reinforcement learning models. By signaling the deviation from expectations, RPE can be thought of
as a feedback signal for the preceding action, enabling association of the action with its subsequent outcome. Reward prediction
errors can be distinguished based on whether they are ‘signed’ or ‘unsigned’. While a signed RPE indicates whether the outcome is
better (positive) or worse (negative) than predicted, an unsigned RPE represents the absolute deviation from expectation without
the valence (positive or negative), and can be indicative of surprise. This can be used to learn the value of actions in a given situation
or ‘state’, enabling the selection of optimal actions (Sutton and Barto, 1998). Dopamine neurons in the VTA have been proposed as
the neurobiological basis for RPEs following the work of Schultz and colleagues (Schultz et al., 1997), who showed that firing rates
of dopamine neurons were proportional to the signed deviation from an expected reward, paralleling theoretical expectations of a
RPE signal (but see Ishino et al., 2023 for recent findings showing dopamine signaling of negative RPE).

While postulation of dopamine as the neurobiological proxy substrate for RPE has propelled investigation on the role of
dopamine in learning, early interest was largely focused on striatal-mediated reward learning. This focus can be largely attributed to
reinforcement learning models being primarily designed for continuous incremental learning (rather than episodic and single-shot
learning), which was thought to depend on the striatum. The ventral striatum is the major projection target of VTA dopamine
neurons (Beckstead et al., 1979; Beier et al., 2015; Lammel et al., 2008, 2011; Swanson, 1982). Indeed, findings in both humans and
animals support the presence of RPE signals in the ventral striatum (e.g. Garrison et al., 2013; Keiflin and Janak, 2015; Shohamy,
2011), and Parkinson’s patients with impaired dopaminergic transmission also show impairment in reward learning tasks (Foerde
and Shohamy, 2011).

In the same way that RPE constitutes a signal for updating in continuous associative learning models, there is also a growing
interest in the investigation of RPE as a learning signal for episodic memory formation (e.g. Rouhani et al., 2023). In early attempts
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to bridge the links between continuous associative learning and episodic memory formation, Wimmer et al. (2014) had participants
perform a reward learning task, with incidental encoding of trial-unique objects. Given the importance of dopamine for hippo-
campal synaptic plasticity, it was predicted that high RPE, associated with phasic dopamine release, should lead to the formation of
stronger memories for the temporally coincident stimulus. However, rather than such a synergistic effect, Wimmer and colleagues
found a negative correlation, whereby higher RPE was associated with poorer memory for the trial-unique object. This finding was
taken as indicative of a potential trade-off between the two forms of learning, and supportive of distinct learning systems (Poldrack
et al., 2001).

Building on the predictions of associative learning models (Esber and Haselgrove, 2011; Mackintosh, 1975; Pearce and Hall,
1980), recent experiments have further attempted to dissociate the effects of signed and unsigned prediction error across the
different phases of learning. In the Mackintosh model (Mackintosh, 1975), it is proposed that attention is increased for cues that
reliably predict rewards and, therefore, it should be expected that a positive prediction error will enhance memory for the reward-
predictive cues. Contrasting with theMackintoshmodel, the Pearce-Hall model (Pearce andHall, 1980) proposes that cues preceding
unexpected outcomes would receive greater attention, and so it should be expected that an unsigned prediction error (i.e. Surprise)
would enhancememory formation for cues associated with greater uncertainty. Supporting the predictions of the Mackintoshmodel,
it was demonstrated that while positive RPE at outcome did not enhance memory for the outcome item, positive RPE at cue
presentation enhanced episodic memory for the cue item (Jang et al., 2019; Rouhani and Niv, 2021). Contrasting the effects
observed during reward cueing, recent work has also shown support for the Pearce-Hall model, whereby unsigned RPE at outcome
was found to enhance memory for the outcome item (Rouhani and Niv, 2021). While these findings do support a potential role of
RPE in modulating memory formation, the dissociation across different phases (at cue versus outcome) is inconsistent with a
simple account of modulation by phasic dopamine RPEs, and in particular, it is unclear why signed and unsigned PE would
differentially influence memory at different timepoints.

Further complicating the interpretation of potential effects of RPE on memory, probabilistic reward cues are now thought to
evoke a combination of phasic PE-like VTA firing after a cue and ramping firing during anticipation of the outcome they predict. A
recent behavioral study provides evidence that these distinct responses may differentially influence memory based on the timing of
the event to be encoded relative to the occurrence of the cue and thus relative to these VTA response components (Stanek
et al., 2019).

Furthermore, it should also be noted that there is currently no evidence of direct transmission of phasic dopaminergic RPE
signals from the VTA to the hippocampus. Indeed, the architecture of sparse VTA innervation to the hippocampus, which contrasts
with its density in the striatum, is not consistent with detection of transient dopamine signals with precise temporal resolution, as
would be required for detection and attribution of error signaling.
4.2 The Hippocampal-VTA loop: Novelty, reward, or the anticipation of change?

A prominent account of dopaminergic enhancement of memory, the Hippocampal-VTA loop account (Lisman and Grace, 2005),
proposes a functional circuit whereby novelty signals in the hippocampus are relayed to the VTA, engaging its mesolimbic
projections to release dopamine in the hippocampus and modulate hippocampal memory. While this account was proposed as
a mechanism for enhanced encoding of novel events and information, it has often been generalized in the research literature as a
mechanistic pathway for the enhanced encoding of other motivationally-salient events beyond novelty, including those associated
with reward.

In the Hippocampal-VTA loop model, the hippocampus serves as a novelty detector comparing incoming information with
existing long-termmemories (Knight, 1996). This is proposed to be accomplished through a mismatch detection mechanism in the
CA1, via the comparison of predictions from CA3 inputs, and actual percepts coming from the entorhinal cortices (Lisman and
Grace, 2005; for detailed mechanistic discussion of how novelty detection can occur in the hippocampus, refer to Kafkas and
Montaldi, 2018; Kumaran andMaguire, 2007; Lisman andOtmakhova, 2001). The detection of novelty leads to the conveyance of a
novelty signal from the hippocampus to the VTA via a polysynaptic pathway: excitatory signals to the nucleus accumbens, which
inhibits the ventral pallidum, decreasing pallidum inhibition of the VTA dopamine neurons (Floresco et al., 2001, 2003; Lodge and
Grace, 2006; Luo et al., 2011). This VTA disinhibition increases dopamine release within the hippocampus, and thus facilitates
memory formation for the novel events (Lisman and Grace, 2005; Otmakhova et al., 2013).

Because the detection of novelty relies on a mismatch between internal predictions and sensory inputs, parallels have often been
drawn between novelty detection and prediction errors (Wessel et al., 2012). To provide a unifying account of the response of
dopamine neurons to RPEs and to novelty, theoretical models have proposed that novelty may increase reward value (i.e. novelty
bonus), so that novel events elicit positive RPEs (Kakade and Dayan, 2002). This account would suggest that RPEs and novelty
should both modulate memory via phasic burst firing of dopamine neurons. The expected dynamics of dopaminergic modulation
are left open in the Hippocampal-VTA loop model, but the neural circuit mechanisms it does specify, yield disinhibition of VTA
dopamine neurons (Grace et al., 2007), rather than directly producing the phasic bursts of VTA firing thought to implement RPEs.
As formulated, the Hippocampal-VTA loop provides an account for observations of temporally extended memory modulation after
novel experience and a mechanism for how phasic PE responses to behaviorally relevant events would be enhanced by novel
contexts, and metaplastic tagging offers a mechanism for memory enhancement to also extend backward in time. However, it does
not include a candidate mechanism for understanding how a PE in response to a novel or salient event selectively enhances memory
for that event.



Interactions between memory and reward systems 7
Nevertheless, studies in humans have shown general support for the engagement of hippocampus and the midbrain VTA
during both the anticipation and the experience of novelty (Bunzeck et al., 2012; Bunzeck and Düzel, 2006; Krebs et al., 2011;
Schott et al., 2004; Wittmann et al., 2007). Experiments investigating the Hippocampal-VTA loop account have often demon-
strated a temporally extended influence of novelty exposure on subsequent memory formation (e.g. Humans: Ballarini et al.,
2013; Cen et al., 2021; Fenker et al., 2008; Schomaker et al., 2014; Rodents: Li et al., 2003; Straube et al., 2003; Takeuchi et al.,
2016). Not all studies report this novelty enhancement, however (see Biel and Bunzeck, 2019; Quent and Henson, 2022 for
recent work showing no memory benefits from pre- or post- learning exposure to novelty). Taking into account such temporal
dynamics, it appears unlikely that novelty-driven dopaminergic modulation of memory formation is supported by mechanisms
relating to temporally precise RPE signals from the midbrain VTA. Furthermore, recent studies in rodents have suggested that in
some contexts, novelty-related enhancement of memory does not depend on the VTA, but may instead be dependent on the
co-release of dopamine by the noradrenergic locus coeruleus (Kempadoo et al., 2016; Takeuchi et al., 2016). These limits on the
role of VTA in novelty modulation of the hippocampus argue for recognizing limits on the generalizability of the
VTA-Hippocampal loop account. They also raise interesting questions about precisely when and how the VTA is important to
memory formation and whether considering reward anticipation and other motivational states can help clarify these
relationships.

In a recent proposal, it was suggested that distinct forms of novelty may differentially engage dopaminergic modulation by the
VTA and the LC (Duszkiewicz et al., 2018). ‘Common novelty’, defined as novel experiences that share commonality with past
experiences, was proposed to activate the VTA to promote integration of the newmemory with existing memories. ‘Distinct novelty’,
defined as novel experience with minimal relations to past experiences, is proposed to activate the LC to support detailed and
distinctive episodic memory. These memory effects are argued to occur by enhancing or suppressing systems consolidation via gene
expression (Genzel et al., 2017). While this account requires further empirical support and does not distinguish between novelty
prediction error signals versus anticipation or other dynamic features, it exemplifies for future investigations: (i) the consideration
of different sources of dopamine, (ii) the dissociable mnemonic influence of VTA and LCmodulation, (iii) the context in which they
are elicited, and (iv) the relationships between novelty signals in different behavioral or motivational contexts, including reward
prediction.
4.3 Neuromodulatory regulation of the medial temporal lobe for memory formation: Neuromodulation-MTL frameworks

Recent frameworks proposed by the present authors and others have focused on the anticipation and experience of motivationally
salient events as neuromodulatory states that bias memory outcomes by selectively engaging regions of the medial temporal lobe in
memory formation (Chiew and Adcock, 2019; Clewett and Murty, 2019; Murty and Adcock, 2017; Murty and Dickerson, 2016).
While these frameworks differ in their focus on the mnemonic influence of affective (Clewett and Murty, 2019) and motivational
states (Chiew and Adcock, 2019; Murty and Adcock, 2017; Murty and Dickerson, 2016), they share a common emphasis on
neuromodulation of the medial temporal lobe by dopaminergic and noradrenergic systems, and as such, will be discussed
collectively as Neuromodulation-MTL frameworks.

These frameworks were initially developed based on findings of differences in memory outcomes under valenced (i.e., positive
and negative) motivational or affective states. While negative emotions have been shown to enhance memory for details of isolated
target items (Bisby and Burgess, 2017; Bowen et al., 2018; Kensinger, 2007; Mather and Sutherland, 2011; Yonelinas and Ritchey,
2015), positive affect has been argued to broaden the scope of information processing (Ashby et al., 1999; Fredrickson, 2001; but
see Harmon-Jones et al., 2013). This broadened processing has been argued to promote integrated memory representations of the
item and its associated context (Madan et al., 2019; Murty et al., 2011; Murty et al., 2017b; Shigemune et al., 2014; Talarico et al.,
2009; Wittmann et al., 2005; Wolosin et al., 2012, 2013).

Broadly, the Neuromodulation-MTL frameworks propose that these affective and motivational states correspond to states of
activation of dopaminergic VTA or the noradrenergic LC. Building on the known differences in representational content across the
medial temporal lobe, Neuromodulation-MTL frameworks propose that these distinct neuromodulatory states bias memory by
selectively engaging different medial temporal circuitry and regions. In particular, while activation of mesolimbic dopaminergic
projection systems from VTA would promote integration of multiple features through engagement of the hippocampus proper and
its networks, activation of the noradrenergic projections systems from LC would instead drive selective prioritization of salient
features through interactions with the amygdala and neocortical medial temporal lobe (entorhinal, parahippocampal, and
perirhinal cortices). While initially drawing on experimental findings elicited by positive (e.g. reward approach) and negative
(e.g. punishment avoidance) motivation, it should be highlighted that the framework does not assume one-to-one mapping
whereby VTA is engaged by positive motivations while the LC is engaged by negative motivations. Rather, it is proposed that
attributes commonly associated with each motivational state reflect the typical preferential engagement of distinct neuromodula-
tory nuclei.

Similar to the previously discussed frameworks, under the Neuromodulation-MTL framework, enhanced memory formation in
the hippocampus is thought to depend on dopaminergic modulation from the VTA. However, rather than a temporally specific
response to an external trigger (e.g. novelty, surprise or prediction error) that enhances memory for that trigger event, the
Neuromodulation-MTL framework proposes a temporally-extended state in which information-processing mode and memory
formation are biased by modulation from the VTA or the LC. In support of this account, it has been shown that encoding for
incidental information can be enhanced during the anticipation of motivationally relevant events (Gruber et al., 2014; Murty and



Fig. 2 Schematic depiction of reward modulation of memory based on the Neuromodulation-MTL framework. Activation of the VTA during reward anticipation can
promote an Interrogative motivational state associated with high dopaminergic (DA) tone and the engagement of hippocampus to enhance associative memory
formation. However, activation of the LC, such as when arousal is high, can instead promote an Imperative motivational state associated with high noradrenergic
(NE) tone and the engagement of surrounding parahippocampal cortex to enhance memory formation for discrete items. Whether reward enhances or impairs
memory is thus predicted to depend on the specific modulatory and mnemonic circuitry engaged by the reward context, as well as on whether task performance is
dependent on hippocampus proper. In particular, high arousal in reward incentive contexts is predicted to disrupt enhancement of hippocampal memory.
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Adcock, 2014). Recent work using fMRI has revealed how anticipatory VTA activation may support hippocampal patterns of
activation conducive to memory formation; strikingly, this modulation of hippocampal states during high VTA activity explained
the relationship between VTA and successful memory formation (Poh et al., 2022). While there is some evidence for analogous
engagement of noradrenergic circuits and neocortical MTL regions during enhanced encoding of salient information (Clewett et al.,
2014, 2018; Lee et al., 2018), the nature of their interaction and its role in memory remains to be clarified. Full demonstration of
dissociable memory outcomes supported by distinct neuromodulatory nuclei, as predicted by the Neuromodulation-MTL accounts,
awaits further study.

The Neuromodulation-MTL models offer explanations not only for motivated memory more broadly (Murty and Adcock,
2017), but also for variable experiences of reward and their memory impacts, including predictions about how and when reward
enhancement of memory may be disrupted. If reward anticipation is accompanied by high VTA dopaminergic tone, an individual
will experience an Interrogativemotivational state that biases exploratory information seeking and engagement of the hippocampus
during encoding. Alternatively, an individual may experience Imperative motivation during reward anticipation (Fig. 2). Although
Imperative motivation is typical under threat of punishment or during avoidance of aversive stimuli, it may also emerge in pursuit
of reward because of perceived high stakes (as in choking), subjective time pressure (Sinclair et al., 2023), or other cognitive or
affective biases. Imperative motivation biases restricted information-seeking in support of achieving salient, urgent goals. Imper-
ative motivation corresponds to increased LC tone and arousal, and engages amygdala and cortical MTL during encoding, reducing
hippocampal involvement in memory formation (Clewett and Murty, 2019; Murty and Adcock, 2017). These findings highlight a
limit on computational models using objective value of incentives to predict learning, and point to the need to consider the specific
neuromodulatory systems engaged by incentives or other motivators in order to understand their impact on learning and thus
behavior.

Finally, while the Neuromodulation-MTL framework draws contrasts between states that typically preferentially involve either the
VTA or the LC (with the consequent modulation of downstreamMTL regions), it should be highlighted that external stimulus events
that elicit dopamine and norepinephrine release tend to overlap, and that LC activity can modulate the excitability of VTA neurons
(Isingrini et al., 2016; Mejias-Aponte, 2016). Coupled with findings crucially implicating dopamine from LC in hippocampal
memory formation under some circumstances, future investigations should consider interactions between LC and VTA in support-
ing distinct brain states for action, information processing, and memory formation.
4.4 Summary

In this section, we reviewed three theoretical frameworks that aim to explain how VTA-Hippocampal interactions can support
adaptive memory formation for motivationally salient experiences. These frameworks are built upon the neurobiological properties
of dopamine neurons, focusing on the neural response to prediction errors, novelty, and reward anticipation. While these accounts
may each focus on different mechanisms, they are not necessarily in conflict, but could instead reflect mechanisms that operate at
multiple timescales to enhance memory formation. Drawing from behavioral and neuroimaging studies in humans, the next
section reviews evidence for reward modulation across different stages of memory processing.
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5 Reward modulation of memory processing in humans

Over the past decade, there has been an accumulating body of work investigating how reward motivation can influence memory
formation in humans. Building on different theoretical foundations (refer to Section 4), these studies have examined how reward
systems can be engaged in different motivational contexts across the different stages of memory processing. In this section, we
organize our review based on these stages, from initial encoding, to post-learning consolidation, and finally retrieval. While most of
these studies rely on blood oxygenation level dependent (BOLD) signal measured using fMRI in humans, and as such, are not direct
measures of dopamine release, there is complementary evidence that BOLD responses in the midbrain are correlated with
dopamine release (Schott et al., 2008) and that stimulation of the VTA (in rodents) is associated with increased BOLD signal in
regions innervated by the VTA (Lohani et al., 2017). Finally, we consider the dynamic nature of memory, and discuss how
dopaminergic modulation can influence the transformation of memory representations over time.
5.1 Motivational influence on memory encoding

The use of extrinsic reward incentives has been central to our understanding of motivational influence on memory formation. One
commonly used experimental procedure for the study of reward-motivated memory in humans is the Monetary Incentivized
encoding (MIE) task (Adcock et al., 2006). In a typical MIE task, participants are presented with a reward cue which indicates the
value of an upcoming stimulus, which is a neutral image (Fig. 3). Participants can earn the associated value if they successfully
remember the stimulus on a subsequent memory test. In line with the expectation that reward systems are involved in motivated
learning, fMRI studies using the MIE have consistently shown that greater BOLD activation in the midbrain VTA following cues
signaling a high reward, but preceding stimulus presentation, predicts memory for the upcoming stimulus (Adcock et al., 2006;
Duan et al., 2020; Wolosin et al., 2012). Importantly, there is also evidence that reward-related memory enhancement is associated
with greater VTA-Hippocampal functional connectivity during the anticipatory period (preceding stimulus presentation) (Adcock
et al., 2006), consistent with theoretical expectations for VTA modulation of the hippocampus during the anticipation of
motivationally relevant events. Another commonly used task that uses extrinsic reward value to study motivated learning is the
Value-directed Remembering task (VDR; refer to Chiew and Bowen, 2022; Knowlton and Castel, 2021 for discussion of its applica-
tions). Rather than temporally isolating anticipatory or modulatory intervals for mechanistic investigation, the VDR task is
optimized to investigate strategic reward-based prioritization and behavioral efficiency in memory formation; the VDR task is
well suited to characterizing individual differences in strategic encoding behaviors due to disorders or over development and aging.

Apart from extrinsic rewards, intrinsic motivations, such as curiosity, can similarly engage the reward system to enhance memory
formation. Using a trivia quiz task (Fig. 3), studies have shown that trivia questions eliciting relatively high curiosity evoke greater
anticipatory activation in reward circuitry (Duan et al., 2020; Gruber et al., 2014; Kang et al., 2009; Poh et al., 2022). Similar to that
seen during the anticipation of monetary rewards, this activation was also associated with better memory for the subsequently
presented trivia answers (Duan et al., 2020; Gruber et al., 2014; Kang et al., 2009; Poh et al., 2022). Further providing support for
VTA modulation of the hippocampus, work by Gruber and colleagues showed that increased VTA-Hippocampal connectivity was
not only associated with memory benefits for the trivia answers, but was also associated with memory benefits for an irrelevant face
image that was presented during anticipation of the trivia answers. Recent work using multivoxel pattern analysis to characterize
neural states in the hippocampus has offered a candidate mechanism: BOLD activation magnitude in the VTA was associated with
Fig. 3 Examples of tasks used in the study of motivated encoding in humans. In the Monetary Incentive Encoding (MIE) task, participants are motivated by extrinsic
monetary rewards to encode the upcoming memoranda (e.g. a valence-neutral image, image-pairs, or words). Variations of the MIE have also examined the
effects of motivation on retrieval by pairing high rewards with a specific stimulus category (rather than a unique exemplar). In the Trivia Quiz task, participants are
motivated by intrinsic curiosity to learn the answer for the trivia question. These studies have consistently shown that anticipatory VTA activation (preceding the
memoranda) was predictive of subsequent learning and memory formation.
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the manifestation of a ‘learning state’ in the hippocampus, predictive of successful memory formation (Poh et al., 2022). The higher
the VTA activation, the more similar the hippocampal pattern of activation was to its most typical state, and the greater the
likelihood that the upcoming information would be remembered.

While we focus here on the medial temporal lobe for mechanistic investigation, there is of course considerable evidence that
motivated memory involves neural circuitry beyond the medial temporal lobe. The prefrontal cortex (PFC), which has been
consistently implicated during reward motivated learning (Braver et al., 2014; Chiew and Adcock, 2019; Knowlton and Castel,
2021), both projects to and receives projections from the VTA (Morales and Margolis, 2017; Oades and Halliday, 1987; Sawaguchi
and Goldman-Rakic, 1994; Sesack and Pickel, 1992; Swanson, 1982). Evidence from anatomical and functional studies suggest that
the VTA, PFC, and hippocampus constitute a functional circuit that enables dopaminergic signaling across multiple timescales, with
the PFC regulating phasic activity and the HPC regulating tonic activity (Murty et al., 2017a). Stimulation of PFC projections to
dopamine neurons in the VTA has been shown to regulate phasic firing in rodents (Gariano and Groves, 1988; Murase et al., 1993),
and fMRI evidence in humans indicates that VTA BOLD responses to rewards may be gated by the dorsolateral PFC (Ballard et al.,
2011). While hippocampal activity has been shown to reduce the inhibition of VTA dopamine neurons, thus increasing tonic
activity, as reviewed above in Section 4 (Floresco et al., 2001, 2003; Lodge and Grace, 2006; Luo et al., 2011), there are no known
direct excitatory inputs from the hippocampus to VTA neurons. PFC direct excitatory projections to VTA, on the other hand, are
well-positioned to actively maintain increases in VTA activity, such as the anticipatory ramping profile (Howe et al., 2013; Totah
et al., 2013). Beyond the regulation of VTA, it has also been proposed that PFC activation during motivated learning could reflect
greater engagement of strategic encoding (Cohen et al., 2014, 2019), or the appraisal of prediction errors (Gruber and Ranganath,
2019). PFC is also implicated in sustaining hippocampal representations to allow their elaboration and integration into memory
(reviewed in Preston and Eichenbaum, 2013). Further taking into account the involvement of the medial PFC in reward processing
(Kahnt, 2018; O’Doherty, 2004), and also in schema formation (Gilboa and Marlatte, 2017; van Kesteren et al., 2012), future
studies should consider how efferents from the VTA to the PFC and hippocampus may support the formation of integrated
representations.

While we have primarily focused on enhancement of memory during reward motivation, there is evidence that motivation does
not necessarily lead to better memory performance. Individual differences in anxiety have been shown to modulate reward-related
memory benefits (Callan and Schweighofer, 2008). High physiological arousal during reward motivation has also been associated
with reward impairment of memory performance (Murty et al., 2011). These exceptions to reward enhancements of hippocampal
memory are examples of imperativemotivational states proposed to be dominated by norepinephrine, rather than dopamine, in our
Neuromodulation-MTL framework. The imposition of extrinsic rewards can also have counterproductive effects when intrinsic
motivation for learning is already high; this undermining effect has been well documented in educational psychology research
(Deci et al., 2001; Kuhbandner et al., 2016; Murayama et al., 2010; Wehe et al., 2015). Thus, in examining the influence of reward
motivation on learning, it is important to consider not only the objectively observable incentives but also—and more importantly
for predicting memory impacts—the learner’s subjective experience of those incentives within the broader motivational context.
As discussed above, the Neuromodulation-MTL framework proposes that the motivational contexts correspond to neural contexts:
specific neuromodulatory states that selectively engage MTL neural circuitries for encoding. It is not the valence of incentives or
reinforcers per se but rather these neuromodulatory states which influence the form and content of memories.
5.2 Reward modulation of post-learning consolidation

A key prediction based on cellular studies of the time course of dopaminergic modulation on synaptic plasticity is that dopami-
nergic influence onmemory formation should extend beyond the encoding event, and hence influence post-learning consolidation.
Consolidation broadly refers to the stabilization of memory representations following learning, and encompasses both cellular
consolidation and systems consolidation. Cellular consolidation primarily involves the strengthening of representations at local
synapses, whereas systems consolidation is thought to involve the ‘transfer’ of memory representations from the hippocampus to
the neocortex (Frankland and Bontempi, 2005; McClelland et al., 1995; Wang and Morris, 2010). While the neurophysiological
evidence for dopaminergic modulation of consolidation primarily relates to cellular consolidation, there is also evidence suggestive
of a role in systems consolidation. As behavioral evidence may not be sufficient in differentiating the two forms of consolidation,
the subsequent interpretation of behavioral effects in humans largely refers to consolidation without explicit differentiation
between these two mechanisms.

Consolidation effects on memory are often examined by comparing performance between an immediate and a delayed memory
test. As consolidation effects are delay-dependent, memory benefits that manifest only at delayed testing, but not during the
immediate test, are considered to represent the effects of memory consolidation. Early evidence for reward-modulation of
consolidation in humans comes from the work of Wittmann et al. (2005). In this study, the authors examinedmemory performance
for object drawings that indicated whether participants would receive a monetary reward for their performance on a speeded
reaction-time task. Comparing memory performance during immediate test and a delayed-test (3 weeks later), it was observed that
recognition for reward-predicting images was better in the delayed-test, but not during the immediate test. In addition, reward
predicting images also evoked greater BOLD activation in the hippocampus and the midbrain, consistent with expectations that
dopaminergic modulation of the hippocampus during encoding may facilitate subsequent consolidation.

Building on the framework of synaptic tag-and-capture, studies in humans have also demonstrated reward-related
consolidation effects by examining retroactive effects from behavioral tagging. These paradigms typically involve three distinct
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phases – (i) Pre-association, (ii) Associative learning, and (iii) Post-association (Fig. 4). In an example of one such paradigm,
participants are shown images from two different categories during the ‘Pre-association’ phase, without reinforcement of either
categories. Following a brief interval, participants are shown new images from the same categories during the ‘Associative learning’
phase, but one of the categories acquires motivational significance through associative pairing with positive (Patil et al., 2016) or
negative reinforcements (Dunsmoor et al., 2015). Following the acquisition of associative pairings, new images from the same
categories are presented in the ‘Post-association’ phase without any additional reinforcements. Consistent with a temporally
extended influence of synaptic-tagging, memory was enhanced for the reinforced image category. However this enhancement was
observed not only for images presented during and after the reinforcement, but was also retroactively observed for images that were
presented prior to reinforcement (Dunsmoor et al., 2015; Patil et al., 2016). In addition, this effect appeared to be stronger in a
delayed-memory test than during an immediate test, suggestive of retroactive, delay-dependent consolidation effects. It should
however be noted that in a study using a similar task structure, retroactive memory enhancement was not observed when the reward
was not performance-dependent (Oyarzún et al., 2016), and more work is required to clarify the conditions in which retroactive
memory enhancement is manifested. While studies such as these primarily demonstrate a lingering mnemonic effect that appears to
be sustained over minutes across different task blocks, recent work have also demonstrated such reward-related retroactive effects on
a trial-by-trial level (Braun et al., 2018), suggesting the possibility of multiple distinct timescale at which ‘tagging’ effects may occur.

While synaptic tag-and-capture provides a mechanism for cellular consolidation, there is also evidence for dopaminergic
modulation of systems consolidation. A key mechanism thought to underlie the ‘transfer’ of hippocampal memory traces to the
neocortex is memory replay (Chen and Wilson, 2023; Káli and Dayan, 2004). By reactivating patterns of neural activity from prior
experiences, memory replay enables the integration of new information into the neocortex gradually, avoiding catastrophic
interference (Kumaran et al., 2016; McClelland et al., 1995; O’Reilly and Norman, 2002). In rodents, it has been shown that
memory replay co-occurs with the firing of VTA neurons (Gomperts et al., 2015), and can increase following the receipt of rewards
(Ambrose et al., 2016; Bhattarai et al., 2020; Michon et al., 2019). While non-invasive imaging modalities in humans may preclude
high-fidelity analysis of memory replay due to their spatial and temporal resolution limits (but see Liu et al., 2019, 2021; McFadyen
et al., 2023; Schuck and Niv, 2019 for detection of rapid replay in humans with non-invasive MEG), these effects can also manifest
at scales that are observable with fMRI (Schuck and Niv, 2019; Staresina et al., 2013; Tambini et al., 2010; Tambini and Davachi,
Fig. 4 Schematic depiction of a behavioral tagging experiment in humans. Participants are shown images from two different categories (e.g. Animals and Tools)
across three phases. In the Pre-association phase, all images are presented without any reinforcement. During the Association phase, one of the image categories
(e.g. Tools) would acquire motivational significance through pairing with reinforcers (e.g. rewards, as illustrated here, or mild static shocks for negative reinforcers).
Following associative learning, participants would once again be presented with images in the absence of additional reinforcements. These studies have often
shown enhanced memory for the reinforced image category, not only during Associative learning, but also in the Pre-association and in the Post-association phase,
suggestive of both retroactive and proactive enhancement for images in the same category.
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2013; Wittkuhn and Schuck, 2021). Examining co-fluctuations in BOLD activity during post-learning rest (i.e. ‘Functional connec-
tivity’), Gruber et al. (2016) showed that post-learning increases in functional connectivity between the VTA and the hippocampus
were associated with reward-related memory enhancement (refer to Frank et al., 2019 for discussions on individual differences in
functional connectivity between hippocampus and reward centers and Cohen et al., 2022 for discussions on developmental changes
in post-learning functional connectivity). In addition, multivoxel patterns in the hippocampus showed a preferential ‘reactivation’
of high-reward context, and this was similarly associated with reward-related memory benefits (Gruber et al., 2016). Beyond the
hippocampus, reward-related changes in functional connectivity with the VTA have also been observed in category-selective visual
cortices. By pairing an image category with monetary reward, Murty et al. (2017b) were able to show selective increases in functional
connectivity between the VTA and visual processing regions responsive to the rewarded image category, suggesting that
reward-modulation of consolidation may also involve the reinstatement or stabilization of representation in perceptual processing
regions.

In conjunction, these studies demonstrate that engagement of the mesolimbic reward system can facilitate not only memory
encoding, but also memory consolidation. This enhanced consolidation may be supported by the prioritized ‘reactivation’ of
reward-related information, enabling its stabilization and integration into the neocortex.
5.3 Reward circuits and motivated retrieval

While motivational influence on encoding and consolidation can increase the accessibility of information during retrieval, there is
also evidence that reward motivation can modulate decision processes during memory retrieval. In a modified Monetary Incentiv-
ized Encoding (MIE) task where a stimulus category (rather than unique exemplars) was associated with high reward during
encoding, participants showed a shift in response bias, increasing the tendency to respond ‘Old’ to images belonging to the
high-reward category (Bowen et al., 2020). When reward incentives were presented both during encoding and retrieval, recognition
accuracy was greatest for faces that were paired with a reward on both occasions (Marini et al., 2011). In addition, when rewards
were paired with specific responses (either correct judgment of ‘Old’ or ‘New’) during recognition, the choice for a rewarded
response was associated with greater BOLD activation in striatal regions, regardless of reward outcome (Han et al., 2010; but see
Elward et al., 2015; King et al., 2018 for an alternative interpretation of striatal engagement during memory retrieval). Further
supporting a causal role for dopaminergic reward circuitry in modulation of retrieval, the use of a D2-receptor antagonist has been
shown to enhance recognition accuracy, and this effect was associated with greater activation in the VTA and hippocampus during
retrieval (Clos et al., 2019b). These findings suggest that reward motivation can engage reward circuitry to modulate retrieval;
however, the mechanisms by which this occurs remains to be clarified (for a review of striatal engagement during memory retrieval
refer to Scimeca and Badre, 2012).

Apart from strategic shifts in decision thresholds (Bowen et al., 2020), the engagement of dopaminergic reward circuitry may
also increase the value of cognitive effort (Westbrook et al., 2020; Westbrook and Braver, 2016), potentially influencing strategic
control and the allocation of cognitive resources toward memory search (for detailed review, refer to Chiew and Bowen, 2022).
Another potential mechanism is the modulation of hippocampal processing via dopaminergic modulation. Pattern completion,
which supports retrieval based on partial cues, have been shown to be disrupted in dopamine transporter knockout mice (Li et al.,
2010), suggesting a role for dopamine regulation in pattern completion. How dopamine modulates pattern completion, and thus
retrieval, remains to be investigated.
5.4 Dopaminergic modulation of memory updating—Integration, differentiation and forgetting

While broadly delineated based on processes of encoding, consolidation, and retrieval, memory is dynamic and also encompasses
multiple processes involved in the updating and modification of memory traces. Here we briefly discuss how dopaminergic
modulation has been implicated in memory updating processes, focusing on integration, differentiation and forgetting.

Integration and differentiation. The assimilation of newly learned information with existing knowledge requires the reorganiza-
tion and updating of older memories, particularly when the new experiences are related to prior knowledge. As learning occurs,
neural representations of different memories can transform, becoming more similar to each other through integration, or becoming
more dissimilar to each other through differentiation. While the mechanisms underlying such transformations remain an active area
of investigation, there is evidence that dopamine may be implicated in both integration and differentiation of memory
representations.

Integration of related experiences via the abstraction of their common relational structures linking memory elements has been
proposed to enable generalization and representational flexibility common across experiences. Experimentally, the co-activation of
the midbrain and the hippocampus during associative learning has been shown to relate to subsequent ability to generalize the
learned relationship to newly encountered information (e.g. Upon learning that Group X prefers both Items A and B, and Group Y
prefers Items C and D, one may infer that someone who likes Item A would be more likely to prefer Item B over Item D) (Shohamy
and Wagner, 2008). In addition, the use of reward motivation has been shown to constitute a ‘shared context’ through which
discrete pieces of information may be embedded. Through the analysis of BOLD activity patterns in the hippocampus, it has been
shown that the patterns of activity are more similar for items encoded under motivational contexts associated with the same levels of
monetary reward than for contexts associated with different levels of reward (Wolosin et al., 2013; Zeithamova et al., 2018), and
behaviorally, the use of free-recall has shown that memories can be adaptively reorganized based on the reward context, such that
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items associated with high rewards were more likely to be clustered during recall (Horwath et al., 2023). While the role of dopamine
in supporting the formation of integrated representations has not been definitively demonstrated, one mechanism that may
facilitate integration is the regulation of neural excitability, because excitability has been shown to increase overlap between the
neural ensembles recruited during the encoding of different events, meaning that these ensembles would be more likely to reactivate
one event when the other is activated in memory (Cai et al., 2016; Chowdhury et al., 2022; Delamare et al., 2023; Mau et al., 2020).
Furthermore, while we have focused on integration during learning, it has been shown that abstraction and integration may
predominantly happen during ‘offline’ consolidation. While the importance of dopamine for memory consolidation is further
suggestive of its potential role in supporting memory integration, this remains to be demonstrated in future investigations.

Whereas integration can facilitate abstraction, minimizing representational overlap through differentiation can reduce interfer-
ence and thus support detailed memories. The potential role of dopaminergic modulation in differentiation was suggested in early
work of event perception. In particular, it was proposed that a change in context can elicit prediction error and trigger phasic
dopamine release. Such prediction errors elicited at event boundaries could serve as a neural signal for global updating (Zacks et al.,
2007, 2011). Behaviorally, reward prediction errors have been shown to create event boundaries that can disrupt the integration of
cross-boundary events (Rouhani et al., 2020). Studies using fMRI have shown greater BOLD activation in the dopaminergic
midbrain during anticipation of event boundaries (Zacks et al., 2011), and during surprising events (Antony et al., 2021). Similarly,
representations in the hippocampus exhibit greater dissimilarity across boundaries than within a boundary (Ezzyat and Davachi,
2014). Apart from the hippocampus, patterns of activity across distributed brain regions have been shown to exhibit abrupt change
following an event boundary (Baldassano et al., 2017). However, it should be noted that these studies have not directly examined
whether activation in the midbrain is related to representational differentiation.

A recent theoretical model proposed that prediction errors can support both integration and differentiation based on the
consistency of new information with existing knowledge (Bein et al., 2023). In addition, the non-monotonic plasticity hypothesis
suggests that the transformation of memory representations may be dependent on the degree of memory reinstatement, such that
moderate reinstatement supports differentiation, while strong reinstatement supports integration (Detre et al., 2013; Newman and
Norman, 2010; Ritvo et al., 2019). As such, investigation of dopaminergic influences on memory transformation may require
further consideration of the activated representational content.

Forgetting. The influence of reward systems on the selectivity of memory can be considered as selectivity of ‘forgetting’, and
recent work has established a role for dopamine in the regulation of forgetting (Castillo Díaz et al., 2021). While forgetting is often
viewed as a decay or the ‘absence’ of a memory, there is a growing body of work emphasizing the adaptive role of forgetting in
facilitating new learning, increasing accessibility of competing memories, and in the flexible updating of prior memories (Anderson
and Hulbert, 2021; Bjork and Bjork, 2019; Hardt et al., 2013; Ryan and Frankland, 2022; Storm, 2011). Retrieval-induced forgetting,
whereby memory retrieval can lead to the forgetting of associated items, has been considered to reflect an adaptive mechanism
whereby competing information is inhibited to facilitate access of relevant memory traces (Anderson et al., 1994; Anderson and
Hulbert, 2021; Norman et al., 2007). In rodents, retrieval-induced forgetting has been shown to be inhibited following inactivation
of the VTA, and this is mediated via D1-receptors in the prefrontal cortex (Gallo et al., 2022), suggesting a causal role for dopamine
in regulating the active forgetting of competing memories. However, in a study where human participants were given juice rewards
during successful memory retrieval, retrieval-induced forgetting was not increased, but was instead eliminated (Imai et al., 2014),
suggesting that the presentation of reward during retrieval may also strengthen or preserve memories for competing items.
As neuroimaging was not performed in this study, it is unclear if this reduction in retrieval-induced forgetting was mediated via
dopaminergic reward circuitries.
5.5 Summary

While there is considerable evidence that reward modulation can influence memory processing across different stages via multiple
mechanisms, these mechanisms have often been considered in isolation. A thorough understanding of the neural basis of adaptive
memory requires further consideration of how distinct mechanisms can interact to modulate memory formation across different
timescales. In this section, we focused our discussion on work in healthy young adults, and in the next section, we will review
evidence for impaired learning and memory when dopaminergic functioning is disrupted.
6 Dysfunction of the dopaminergic systems and implication for learning and memory

The dysregulation of dopaminergic circuitry has been observed in various psychiatric and neurodegenerative conditions. Having
detailed the importance of dopamine in learning and memory formation, it would be expected that the disruption of dopaminergic
functions may constitute a key factor underlying learning and memory deficits that are common in diverse clinical populations.
In the following section, we review evidence for the disruption of dopaminergic circuits in healthy aging and across different clinical
populations. We consider how impairments of learning and memory might not only be the consequence of clinical disorders but
could potentially constitute a transdiagnostic process leading to disordered cognition and behavior. We follow up with a discussion
regarding how dopaminergic pathways could be a mechanistic target for therapeutic interventions, and discuss the potential for
using non-invasive modulation of dopaminergic pathways as a low-risk early intervention.
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6.1 Disordered cognition as an outcome of learning dysfunctions

As dopamine is postulated to play a central role in reinforcement learning, there has been growing interest in explaining disordered
cognition and behavior using reinforcement learning models, particularly in disorders with strong dopaminergic associations (Maia
and Frank, 2011). In this formulation, cognitive deficits can be seen as an outcome of alterations in learning from rewards or
punishments, stemming from dopamine dysregulation. The use of reward-learning tasks in conjunction with reinforcement
learning models hence provides a means for characterizing the processes that may be implicated. Here, we consider how
dysregulation of dopamine not only influences reinforcement learning but may also implicate hippocampal-dependent learning
mechanisms.

Addiction. Building on the role of dopamine in reinforcing learned behaviors, one of the earliest applications of reinforcement
learning models in psychiatry was toward understanding drug addiction and addictive behaviors (Redish, 2004). In the initial
formulation of these ideas, it was proposed that compulsive drug behavior may arise from a self-perpetuating cycle, whereby the
value of an action leading to drug receipt is constantly increasing due to the absence of normal bounds on positive prediction errors
during reward consumption (Redish, 2004). This growing value thus serves to reinforce drug seeking behaviors. While subsequent
behavioral experiments do not support the predictions of an ‘unbounded’ prediction error (Panlilio and Goldberg, 2007), this
initial application of reinforcement learning facilitated the development of more sophisticated models that are better able to
account for the maladaptive behaviors observed in addiction (Gueguen et al., 2021; Huys et al., 2016; Liu et al., 2020; Mollick and
Kober, 2020).

Hippocampal-dependent learning mechanisms have also been implicated in the development and behavioral expression of
addiction (Belujon and Grace, 2011; Koob and Volkow, 2010; Kutlu and Gould, 2016; Robbins et al., 2008). By forming an
association between neutral stimuli in the environment and the experience of substance use, the neutral stimulus could become a
‘cue’ that drives the reinstatement of craving behaviors (Crombag et al., 2008; Di Chiara et al., 1999) personal smoking versus
personal non-smoking contexts has been shown to activate hippocampus together with insula, which predicted the number of puffs
on a cigarette obtained after the session (McClernon et al., 2016) There have been ongoing investigations into whether learned
associations could be weakened after learning through reactivation, which renders memories labile, followed by the disruption of
their ‘reconsolidation’ (Exton-McGuinness and Milton, 2018; Sorg, 2012; Taylor et al., 2009; Torregrossa and Taylor, 2013). While
the evidence for reconsolidation-based therapy for addiction in humans has been mixed thus far (Exton-McGuinness and Milton,
2018), there are multiple mechanistic pathways that offer targets for weakening the learned associations that create cues for drug
use. As interactions between the VTA and hippocampus have been implicated in post-learning consolidation, future investigations
should examine if the suppression of dopaminergic reward circuitry can serve as a target for disrupting the reconsolidation of
dysfunctional associations in addiction.

Schizophrenia. Schizophrenia is a complex disorder characterized by a combination of positive symptoms of psychosis, negative
symptoms including avolition, and cognitive impairments, including impairments of learning andmemory (Andreasen and Flaum,
1991; Guo et al., 2019). Dysfunction of the dopaminergic system has been proposed to play a major role in schizophrenia
pathogenesis (Howes and Kapur, 2009). The dopamine hypothesis followed observations of the effects of D2-blocking drugs,
and “psychotomimetic” effects of amphetamine (Angrist et al., 1974; Carlsson, 1988; Snyder, 1976). The original hypotheses
posited excessive dopaminergic signaling, with variants specifying that hyperfunction in the mesolimbic pathway caused positive
symptoms, while reduced signaling in the mesocortical pathway caused negative symptoms.

Much recent evidence implicates other neurotransmitters and pathways in the pathophysiology of psychosis. However, a key
question for models of schizophrenia is to explain not only the physiology of the acute state of psychosis, but also how psychosis
stabilizes and becomes chronic. This stabilization implies either development, neurodegeneration, or learning. Candidate mech-
anisms underpinning the transition to chronic psychosis include plasticity in cortex, striatum, and medial temporal lobe memory
systems.

Dopamine dysregulation in schizophrenia has been proposed to give rise to distortions in prediction errors, resulting in the
formation of inaccurate associations, failure to habituate, and the misattribution of salience to events. The question remains
whether these changes are due to disease effects on dopaminergic projection neurons themselves, changes in dopamine receptors, or
from inputs to midbrain dopamine nuclei, for example inputs from the prefrontal cortex or hippocampus.

Hippocampal signals have been shown to increase the activation of VTA neurons in rodents (Floresco et al., 2001), a relationship
that has also been demonstrated in humans using fMRI (Murty et al., 2017a). This increased hippocampal signaling thus offers a
potential explanation for the sustained hyperdopaminergic state hypothesized in schizophrenia (Lodge and Grace, 2011). Patients
with Schizophrenia indeed show memory deficits (Aleman et al., 1999; Ranganath et al., 2008), including less updating and
stronger priors. Whether these hippocampal deficits in schizophrenia are dopamine dependent is a question under active
investigation.

Aging and neurodegeneration. The disruption of dopamine function has been prominently implicated in various neurodegen-
erative diseases including Parkinson’s disease and Alzheimer’s disease (Morgan et al., 1987; Rangel-Barajas et al., 2015). However,
as dopamine functioning also decreases in normative aging (Bäckman et al., 2006, 2010), it remains an open question how changes
in the dopaminergic systems contribute to memory decline in either healthy aging or neurodegeneration.

There is accumulating evidence that the degeneration of VTA dopaminergic neurons may contribute to memory deficits in
Alzheimer’s disease (D’Amelio et al., 2018). Using rodent models, the degeneration of dopamine neurons have been shown to
precede the formation of amyloid plaques and neuronal loss in the hippocampus (Nobili et al., 2017), suggesting that deficits in
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hippocampal-dependent memory may arise as an outcome of VTA neuron degeneration. In humans, patients with Alzheimer’s
disease have been shown to exhibit reduced functional connectivity between the VTA andmedial temporal lobe regions (Serra et al.,
2018), and structural findings also showed that smaller VTA volume in Alzheimer’s patients was associated with poorer episodic
memory function (DeMarco and Venneri, 2018). While administration of dopaminergic drugs have shown successes in modulating
synaptic plasticity (as measured by motor-evoked potentials) in patients with Alzheimer’s disease (Koch et al., 2011, 2014), its
influence on cognitive outcomes has been less apparent (Koch et al., 2020).

Work in healthy aging has suggested that, beyond a direct influence on cognitive functioning, decrease in dopamine may also
impact cognition by increasing the cost of cognitive effort and decreasing intrinsic motivation (Hess, 2014). In line with this
account, it has been demonstrated that older adults show a better ability to retain memory for information that they were curious
about (Castel, 2023; McGillivray et al., 2015), and the elicitation of curiosity also enhanced older adults’ ability to learn
task-irrelevant information (Galli et al., 2018). These findings suggest that beyond the regulation of dopaminergic functioning
via pharmaceutics, the regulation of motivation may also be crucial for preventing the exacerbation of memory decline in aging and
neurodegeneration.

Major Depressive Disorder. The lack of motivation and anhedonia in patients with depression have been suggested to reflect a
reduction in sensitivity to rewards (Eshel and Roiser, 2010; Pizzagalli, 2014; Treadway and Zald, 2013). Consistent with this
account, depressed patients have been shown to exhibit reduced learning from rewarding outcomes and are less likely to encode
new positive information (Rupprechter et al., 2020). In addition, episodic memories have been shown to exhibit similar affective
bias against positive information during major depressive disorders (Burt et al., 1995). Building on the relation between prediction
errors to episodic encoding, it was shown that while patients with depression exhibited better episodic encoding following
prediction error, this was only observed during negative prediction errors, but not following positive prediction errors (Rouhani
and Niv, 2019). While none of the above studies have shown a direct link between dopamine dysregulation and impaired encoding
of positive information, pharmacological enhancement of dopaminergic function in healthy adults has shown an increased
weighting of positive information during decision making (Pessiglione et al., 2006). The study hints at a potential mechanistic
pathway whereby affective bias may be alleviated through the upregulation of dopamine functions.

In addition to an affective bias in the encoding of new memories, positive memories are less accessible for recall in individuals
with depression (Gaddy and Ingram, 2014). In a clinical trial that aimed to increase the accessibility of positive memories through
the upregulation of amygdala activity, it was shown that real-time fMRI neurofeedback training can increase the recall of positive
autobiographical memory, and also decrease associated depressive symptoms (Young et al., 2017). While the study focused on the
role of the amygdala in the enhanced encoding of salient events, the amygdala receives substantial dopaminergic projection from
the VTA, and it is possible that upregulation of amygdala activation during neurofeedback would also implicate broader network
level changes involving the dopaminergic circuits, which could contribute to learning in these paradigms.
7 Modulation of dopaminergic function and motivation for learning enhancement and clinical interventions

With the broad influence of dopamine across a range of cognitive functions and clinical disorders, the modulation of dopaminergic
function has been a key target for enhancing cognitive functions and for the alleviation of clinical symptoms. While the complex
dynamics of dopaminergic influence can make it difficult for precise targeting, there is evidence for the successful regulation of
dopaminergic functioning pertaining to learning and memory. Here, we briefly discuss evidence for pharmacological manipulation
of dopamine in the context of learning and memory, and we consider recent developments of real-time fMRI neurofeedback as a
potential tool for more targeted, non-invasive intervention.

Pharmacological manipulation of dopamine for learning and memory. Based on the evidence that dopamine is essential to long
term plasticity and memory formation, it might be expected that simply increasing dopamine levels should enhance learning and
memory. Across studies on mnemonic effects of pharmacological augmentation of dopamine levels in humans, however, findings
have painted a more complex picture, perhaps less surprising in view of the multiple mechanisms reviewed here.

In populations with diminished dopaminergic functioning, evidence suggests that the pharmacological increase of dopamine
can produce mnemonic benefits, such as in patients with Parkinson’s disease (Thurm et al., 2016) or in healthy older adults
(Baeuchl et al., 2023; Morcom et al., 2010). Healthy older adults with poorer memory performance, suggestive of lower baseline
dopamine levels, have been shown to demonstrate memory benefits following administration of the dopamine agonist bromo-
criptine (Abdulrahman et al., 2017). Baseline dopamine levels is an important consideration in identifying mechanisms through
which distinct processes may be influenced by pharmacological manipulation. It has been proposed that working memory and
prefrontal functions may be impaired when dopamine is either insufficient or excessive (Cools and D’Esposito, 2011; Seamans and
Yang, 2004; Williams and Goldman-Rakic, 1995). By characterizing a non-monotonic inverted U-shaped relationship between
dopamine levels and cognitive functions that contributes to long-term memory formation, these findings suggest that baseline
dopamine levels may similarly determine the mnemonic effects of dopaminergic drugs. Future work examining the mnemonic
effects of dopamine pharmacology would require a more precise consideration of baseline dopamine levels and dose-dependent
effects (e.g. Chowdhury et al., 2012; Monte-Silva et al., 2009) to characterize an optimum range of dopamine for long-term
memory.

In addition to consideration of an individual’s baseline dopamine availability, predicting dopaminergic pharmacological effects
on memory may also need to account for the multiple mechanisms and their interactions modulated by dopaminergic
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pharmacology. In contrast to populations with reduced dopamine availability, pharmacologic manipulation of dopamine in
healthy young adults has been equivocal, with results showing both enhanced (Clos et al., 2019a, 2019b; Knecht et al., 2004;
Ripollés et al., 2018) and impaired memory performance (Apitz and Bunzeck, 2013; Baeuchl et al., 2023; Gönner et al., 2023). This
mixed picture may stem partly from the way in which dopamine levels have typically been experimentally manipulated in humans
(both patients and healthy participants) via the use of L-dopa, which is a dopamine precursor and is thus not selective to any
dopamine receptor subtype or anatomical distribution (see above sections for discussion of D1- and D2-like receptor subtypes and
their distributions and cognitive effects). This non-selectivity implies that a behavioral effect of L-dopa will depend on the
interaction of multiple concurrent mechanisms. While some studies in older adults have investigated the D2 agonist bromocriptine
in aging, it is also a D1 antagonist. While D1 agonists would potentially be more relevant for hippocampal function, the only agents
that have been available are investigational and have significant side effects that limit their use. Even in populations with
diminished dopaminergic functions, the mnemonic effects of dopamine manipulation can vary based on task demands (Sharp
et al., 2020), and can also evolve across time (Chowdhury et al., 2012; Grogan et al., 2017; Isotalus et al., 2023). Like arousal and
motivational states, accounting for baseline cognitive performance and dopamine availability will likely be important for predicting
the effects of L-dopa and other agents in healthy young participants.

To summarize, while better understanding of potential mnemonic benefits of dopamine drugs on both healthy and clinical
populations will benefit from studies with more precise spatial and temporal targeting, for example via increasing receptor
specificity (e.g. Abdulrahman et al., 2017; Clos et al., 2019b; Hauser et al., 2019; Morcom et al., 2010), rationales for pharmaco-
logical enhancement will remain complex and irreducibly constrained by the need to characterize of an individual’s baseline
dopamine status at the time of a pharmacological challenge. The Neuromodulation-MTL framework would also argue for a need to
consider shorter-term state changes as important contexts for drug effects. All in all, these limitations together point to a need for
methods more dynamic than orally administered drugs for regulating dopamine function.

Endogenous self-regulation of reward systems with neurofeedback. Beyond the augmentation of brain activity through pharma-
ceutical manipulation, there has also been immense interest in understanding how individuals can learn to endogenously regulate
their brain activity. One way in which this has been examined is through neurofeedback, where brain activity is recorded and
converted into signals which can then be used as a feedback signal for learning (deCharms, 2008; Hampson, 2021; LaConte, 2011;
Sitaram et al., 2016; Weiskopf, 2012). Using real-time fMRI, it has been shown that human participants are able to upregulate
activity in the dopaminergic VTA when presented with visual feedback informative of BOLD activity in their VTA (Sulzer et al.,
2013). More recently, in a study emphasizing the use of motivational strategies during neurofeedback training, it was demonstrated
that human participants are able to develop the ability for upregulation of VTA BOLD activation, even in the absence of feedback
(MacInnes et al., 2016).

As would be expected based on the evidence reviewed above, the successful upregulation of BOLD activity in the VTA was
accompanied by increased post-training functional connectivity between the VTA and the hippocampus (MacInnes et al., 2016), as
well as the accumbens. Whether this increased functional coupling translates to changes in associated cognitive processing, such as
enhanced learning, as observed in studies of motivated memory (e.g. Adcock et al., 2006; Murty and Adcock, 2014; Wolosin et al.,
2012), or the regulation of hippocampal states supporting memory formation (Poh et al., 2022) remains to be investigated.

Because neurofeedback provides a non-invasive tool that enables precise targeting of specific brain structures, connections, and
even activation patterns (Ramot and Martin, 2022; Taschereau-Dumouchel et al., 2022; Watanabe et al., 2017) there is an immense
potential for translational application, particularly in prevention or the early stages of clinical disorders, where the use of drugs may
be considered premature or too risky. As work continues to progress in the domain of neurofeedback, it is important to demonstrate
the functional and behavioral significance of endogenous regulation (e.g. Rance et al., 2018; Thibault et al., 2018; Tursic et al.,
2020), and to further identify individual differences that may prevent learning from neurofeedback (Haugg et al., 2020, 2021;
Hellrung et al., 2022).

Regulation of motivation for learning-based interventions. Neurofeedback is a technique that aims to train individuals to regulate
their own brain function, but we are already extracting important lessons from the use of neurofeedback techniques about the
potential applications of self-regulation skills more broadly. The findings reviewed above imply that self-regulation of motivation is
a skill that can be learned, and moreover, used to enhance memory and learning in education and therapeutic settings. Many
psychotherapies leverage the ability to perceive contingencies, to abstract rules from specific events (Johnson and Redish, 2007) for
new decisions, to prospect future outcomes (Addis et al., 2007; Hassabis and Maguire, 2009), and to generalize insights from the
clinician’s office to daily life. All these cognitive functions are associated with the hippocampus and medial temporal lobe memory
system function. Understanding how motivation may enhance adaptive memory formation offers potential tools to understand
and improve learning and learning-based therapies.

Beyond the argument that self-regulation of motivation is a potentially powerful tool for enhancing adaptive learning, it is worth
noting that human social behavior already includes tools for regulating the same affective and neuromodulatory states that are the
target of neurofeedback-based training. For example, a technique common in Motivational Interviewing therapy (Miller, 1983;
Miller and Rollnick, 2009) involves a preparatory, conditional cue to set up an opportunity for learning: “I have some information
that may be useful to you. Would you like me to share it?” This approach of eliciting another person’s “appetite for information”
may, via the anticipation and motivational state it engenders, enhance memory formation for the knowledge being communicated.
Recent work has shown that instructed motivational states can bias information seeking choice behaviors and influence learning.
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By using different cover stories for an identical reinforcement learning task (pretending to be a thief (i) executing or (ii) planning a
heist), it was shown that the induction of different motivational states led to decisions that prioritized either reward or the reduction
of uncertainty, despite identical reinforcement and incentives (Sinclair et al., 2023). Considering the mechanistic insights provided
by neurofeedback and other experimental studies in the context of behavioral interventions, both current and novel, will help
rationalize, assess, and integrate a broad repertoire of tools for helping people achieve states conducive to adaptive learning.
8 Open questions for future research

8.1 How do reward effects on memory translate to actions, decisions, and future behavior?

A central feature of an adaptive memory system is the flexible application of memories to inform future behavior and decisions.
While recent investigations have progressively examined how episodic memory can influence decision making, it remains unclear
how motivational bias in memory formation would translate to future behavior, and whether this is mediated by similar reward
circuitries.

Prior work has shown that the retrieval of memoranda encoded in a rewarding context is associated with BOLD activation in the
reward circuits, suggesting that value information can be reinstated during memory retrieval (Elward et al., 2015; Kuhl et al., 2010).
Further suggestive of a potential value ‘transfer’, it has been shown that when a motivationally-neutral image acquires value through
reward-learning, the reward can increase the value of other associated images, even when the images have never been paired with a
reward (Wimmer and Shohamy, 2012). These findings hint at a potential mechanism whereby motivational significance experi-
enced in an encoding context can be transferred and generalized to a novel context through memory retrieval.

Consistent with a role of memory retrieval in decision-making, the induction of a ‘retrieval state’, primed by presentation of
familiar images, has been shown to increase the weight given to past experiences during decision-making (Duncan and Shohamy,
2016). The successful retrieval of reward outcomes from prior experiences can also bias subsequent choice preference for images that
were previously associated with high rewards (Murty et al., 2016). More directly implicating memory retrieval in the decision
process, recent work has shown how the neural reinstatement of previous contexts can bias ongoing choices (Bornstein and
Norman, 2017), and that a reminder of a specific episodic event can bias value estimation during decision-making (Bornstein et al.,
2017). While these studies demonstrate how past memories can influence future decisions, open questions remain as to: (i) whether
engagement of reward circuits during learning is associated with subsequent reinstatement in novel contexts, and (ii) whether
maladaptive decision-making may be in part driven by disruption of the adaptive encoding and retrieval of episodic experiences.

On the flip side, our actions and choices can also influence the memories that we form. Rather than being passive recipients of
information, humans are active information-seekers, and the ways in which we seek information can be biased by ongoing mood
(Lydon-Staley et al., 2021) and motivational state (Hsiung et al., 2023; Sinclair et al., 2023). Even in the absence of differences in
informational content, it has been shown that the subjective experience of choice (DuBrow et al., 2019; Murty et al., 2015), agency
(Hon and Yeo, 2021; Ruiz et al., 2023), or the engagement of motor processing (Kinder and Buss, 2021; Yebra et al., 2019) may be
sufficient to enhance memory formation. As dopamine is also implicated in driving action and goal-directed behavior, it is possible
that engagement of dopaminergic circuits during the anticipation (of action or choice) may suffice for enhanced learning of
temporally coincident information. Dissecting this influence will, however, require disentangling from other modulatory influences
associated with actions and intentions, including sensory experience, planning, and motor behavior.
9 Concluding remarks

Investigating the interactions between reward and memory systems has enabled a deeper understanding of the links between
individual motivational states and memory formation, providing a neurobiological basis for an adaptive memory system. Here, we
reviewed theoretical frameworks and empirical evidence, highlighting how rewards and their anticipation can modulate different
stages of memory processing across distinct timescales. We also considered how pathological outcomes could arise from disruptions
to reward circuits and their impact on memory systems, and how remediation via dopaminergic modulation could serve as
potential intervention for learning and memory disorders. More work will be needed to investigate the precise mnemonic benefits
associated with dopaminergic manipulations, while limitations on pharmacological development argue for additional behavioral
investigations.

As reviewed in this chapter, while the precise underlying mechanisms of motivated memory remain under active investigation in
multiple fields, there is strong and convergent evidence that modulation of memory circuits by dopamine originating in the ventral
tegmental area plays a central role in the adaptive prioritization of motivationally-relevant memories, with substantial roles for
other neurotransmitters and projection systems, including norepinephrine and the amygdala. In contrast to the once canonical view
that the hippocampus and medial temporal lobes are automatic recorders of attended novel experience, it is now abundantly clear
that rewards and motivational states act at multiple spatial and temporal scales and via multiple synergistic mechanisms to shape
memory for adaptive behavior.
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